首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Broken‐symmetry DFT calculations on transition‐metal clusters with more than two centers allow the hyperfine coupling constants to be extracted. Application of the proposed theoretical scheme to a tetranuclear manganese complex that models the S2 state of the oxygen‐evolving complex of photosystem II yields hyperfine parameters that can be directly compared with experimental data. The picture shows the metal–oxo core of the model and the following parameters; exchange coupling constant Jij, the expectation value of the site‐spin operator , and the isotropic hyperfine coupling parameters.

  相似文献   


2.
A series of nickel complexes with nuclearity ranging from Ni3 to Ni6 have been obtained by treatment of a variety of nickel salts with the 2‐pyridylcyanoxime ligand. The reported compounds have as a common structural feature the triangular arrangement of nickel cations bridged by a central μ3‐oxo/alkoxo ligand. These compounds are simultaneously the first nickel derivatives of the 2‐pyridylcyanoxime ligand and the first examples of isolated, μ3‐O triangular pyridyloximate nickel complexes. Magnetic measurements reveal antiferromagnetic interactions promoted by the μ3‐O and oximato superexchange pathways and comparison of the experimental structural and magnetic data with DFT calculations give an in‐depth explanation of the factors that determine the magnetic interaction in this kind of system.  相似文献   

3.
A series of cobalt‐doped germanium clusters, CoGen?/0 (n=2–11), are investigated by using anion photoelectron spectroscopy combined with density functional theory calculations. For both anionic and neutral CoGen (n=2–11) clusters, the critical size of the transition from exo‐ to endohedral structures is n=9. Natural population analysis shows that there is electron transfer from the Gen framework to the Co atom at n=7–11 for both anionic and neutral CoGen clusters. The magnetic moments of the anionic and neutral CoGen clusters decrease to the lowest values at n=10 and 11. The transfer of electrons from the Gen framework to the Co atom and the minimization of the magnetic moments are related to the evolution of CoGen structures from exo‐ to endohedral.  相似文献   

4.
5.
A new magnetic ionic liquid (MIL) with 3D antiferromagnetic ordering has been synthetized and characterized. The information obtained from magnetic characterization was supplemented by analysis of DFT calculations and the magneto‐structural correlations. The result gives no evidence for direct iron‐iron interactions, corroborating that the 3D magnetic ordering in MILs takes place via super‐exchange coupling containing two diamagnetic atoms intermediaries.  相似文献   

6.
A DFT‐based molecular model for imidazolium–silica‐based nanoparticle networks (INNs) is presented. The INNs were synthesized and characterized by using small‐angle X‐ray scattering (SAXS), NMR spectroscopy, and theoretical ab initio calculations. 11B and 31P HETCOR CP MAS experiments were recorded. Calculated 19F NMR spectroscopy results, combined with the calculated anion–imidazolium (IM) distances, predicted the IM chain density in the INN, which was also confirmed from thermogravimetric analysis/mass spectrometry results. The presence of water molecules trapped between the nanoparticles is also suggested. First considerations on possible π–π stacking between the IM rings are presented. The predicted electronic properties confirm the photoluminescence emissions in the correct spectral domain.  相似文献   

7.
Non‐stoichiometric wüstite particles (Fe1?yO) are synthesized using the controlled room‐temperature hydrolysis of the organometallic precursor {Fe[N(SiMe3)2]2}. Particles stabilized by hexadecylamine with a diameter of 5 nm are obtained. For such small nanoparticles, a distorted crystallographic structure is evidenced by wide‐angle X‐ray scattering at room temperature and reported for the first time. The study of the magnetic properties indicates that these particles are composed of an antiferromagnetic core surrounded by a ferromagnetic shell. According to the Néel theory, we demonstrate that this shell consists of 1.5 % of Fe3+ ions ferromagnetically coupled with Fe2+ ions.  相似文献   

8.
9.
How low can you go? An FeII4 square was prepared by self‐assembly and exhibits both thermally induced and photoinduced spin crossover from a system with four high‐spin (HS) centers to one with two high‐spin and two low‐spin (LS) centers. The spin‐crossover sites are located on the same side of the square, and the spin transition and magnetic interactions (see picture) are synergistically coupled.

  相似文献   


10.
Compounds [Fe3Ln(tea)2(dpm)6] ( Fe3Ln ; Ln= Tb–Yb, H3tea=triethanolamine, Hdpm=dipivaloylmethane) were synthesized as lanthanide(III)‐centered variants of tetrairon(III) single‐molecule magnets (Fe4) and isolated in crystalline form. Compounds with Ln=Tb–Tm are isomorphous and show crystallographic threefold symmetry. The coordination environment of the rare earth, given by two tea3? ligands, can be described as a bicapped distorted trigonal prism with D3 symmetry. Magnetic measurements showed the presence of weak ferromagnetic Fe ??? Ln interactions for derivatives with Tb, Dy, Ho, and Er, and of weak antiferromagnetic or negligible coupling in complexes with Tm and Yb. Alternating current susceptibility measurements showed simple paramagnetic behavior down to 1.8 K and for frequencies reaching 10000 Hz, despite the easy‐axis magnetic anisotropy found in Fe3Dy , Fe3Er , and Fe3Tm by single‐crystal angle‐resolved magnetometry. Relativistic quantum chemistry calculations were performed on Fe3Ln (Ln=Tb–Tm): the ground J multiplet of Ln3+ ion is split by the crystal field to give a ground singlet state for Tb and Tm, and a doublet for Dy, Ho, and Er with a large admixture of mJ states. Gyromagnetic factors result in no predominance of gz component along the threefold axis, with comparable gx and gy values in all compounds. It follows that the environment provided by the tea3? ligands, though uniaxial, is unsuitable to promote slow magnetic relaxation in Fe3Ln species.  相似文献   

11.
TiO2 doped with transition metals shows improved photocatalytic efficiency. Herein the electronic and optical properties of Mo‐doped TiO2 with defects are investigated by DFT calculations. For both rutile and anatase phases of TiO2, the bandgap decreases continuously with increasing Mo doping level. The 4d electrons of Mo introduce localized states into the forbidden band of TiO2, and this shifts the absorption edge into the visible‐light region and enhances the photocatalytic activity. Since defects are universally distributed in TiO2 or doped TiO2, the effect of oxygen deficiency due to oxygen vacancies or interstitial Mo atoms is systemically studied. Oxygen vacancies associated with the Mo dopant atoms or interstitial Mo will reduce the spin polarization and magnetic moment of Mo‐doped TiO2. Moreover, oxygen deficiency has a negative impact on the improved photocatalytic activity of Mo‐doped TiO2. The current results indicate that substitutional Mo, interstitial Mo, and oxygen vacancy have different impacts on the electronic/optical properties of TiO2 and are suited to different applications.  相似文献   

12.
We designed a cyclic borane (B6H12) molecule with a benzene‐like structure, in which the six B atoms are located in the same plane. Three methods of B3LYP, MP2, and CCSD with the 6‐311++G** basis were used to investigate its structure, electronic property, and stability. Next, we calculated the stability and electronic property of three hydroboron derivatives with fused rings of B10H18, B14H24, and B16H26. Finally, we investigated three types of novel two‐dimensional infinite hydroboron sheets with diborane as a building block. The results of the phonon spectra ensure the dynamic stability of these predicted structures. Furthermore, the three types of hydroboron sheets are shown to have different band gap energies of less than 3.0 eV. Some investigations on the optical properties have also been performed. The predicted sheets are candidates for semiconductors, whose band gap energy can be tuned by the positions of the bridge hydrogen atoms in the sheets.  相似文献   

13.
In this work we have analyzed in detail the magnetic anisotropy in a series of hydrotris(pyrazolyl)borate (Tp?) metal complexes, namely [VTpCl]+, [CrTpCl]+, [MnTpCl]+, [FeTpCl], [CoTpCl], and [NiTpCl], and their substituted methyl and tert‐butyl analogues with the goal of observing the effect of the ligand field on the magnetic properties. In the [VTpCl]+, [CrTpCl]+, [CoTpCl], and [NiTpCl] complexes, the magnetic anisotropy arises as a consequence of out‐of‐state spin–orbit coupling, and covalent changes induced by the substitution of hydrogen atoms on the pyrazolyl rings does not lead to drastic changes in the magnetic anisotropy. On the other hand, much larger magnetic anisotropies were predicted in complexes displaying a degenerate ground state, namely [MnTpCl]+ and [FeTpCl], due to in‐state spin–orbit coupling. The anisotropy in these systems was shown to be very sensitive to perturbations, for example, chemical substitution and distortions due to the Jahn–Teller effect. We found that by substituting the hydrogen atoms in [MnTpCl]+ and [FeTpCl] by methyl and tert‐butyl groups, certain covalent contributions to the magnetic anisotropy energy (MAE) could be controlled, thereby achieving higher values. Moreover, we showed that the selection of ion has important consequences for the symmetry of the ground spin–orbit term, opening the possibility of achieving zero magnetic tunneling even in non‐Kramers ions. We have also shown that substitution may also contribute to a quenching of the Jahn–Teller effect, which could significantly reduce the magnetic anisotropy of the complexes studied.  相似文献   

14.
The interaction between alkyl radicals and graphene was studied by means of dispersion‐corrected density functional theory. The results indicate that isolated alkyl radicals are not likely to be attached onto perfect graphene. It was found that the covalent binding energies are low, and because of the large entropic contribution, Δ${G{{{\ominus}\hfill \atop 298\hfill}}}$ is positive for methyl, ethyl, isopropyl, and tert‐butyl radicals. Although the alkylation may proceed by moderate heating, the desorption barriers are low. For the removal of the methyl and tert‐butyl radicals covalently bonded to graphene, 15.3 and 2.4 kcal mol?1 are needed, respectively. When alkyl radicals are agglomerated, the binding energies are increased. For the addition in the ortho position and on opposite sides of the sheet, the graphene–CH3 binding energy is increased by 20 kcal mol?1, whereas for the para addition on the same side of the sheet, the increment is 9.4 kcal mol?1. In both cases, the agglomeration turns the Δ${G{{{\ominus}\hfill \atop 298\hfill}}}$ <0. For the ethyl radical, the ortho addition on opposite sides of the sheet has a negative Δ${G{{{\ominus}\hfill \atop 298\hfill}}}$ , whereas for isopropyl and tert‐butyl radicals the reactions are endergonic. The attachment of the four alkyl radicals under consideration onto the zigzag edges is exergonic. The noncovalent adsorption energies computed for ethyl, isopropyl, and tert‐butyl radicals are significantly larger than the graphene–alkyl‐radical covalent binding energies. Thus, physisorption is favored over chemisorption. As for the Δ${G{{{\ominus}\hfill \atop 298\hfill}}}$ for the adsorption of isolated alkyl radicals, only the tert‐butyl radical is likely to be exergonic. For the phenalenyl radical we were not able to locate a local minimum for the chemisorbed structure since it moves to the physisorbed structure. An important conclusion of this work is that the consideration of entropic effects is essential to investigate the interaction between graphene and free radicals.  相似文献   

15.
Detailed ab initio calculations were performed on two structurally different cerium(III) single‐molecule magnets (SMMs) to probe the origin of magnetic anisotropy and to understand the mechanism of magnetic relaxations. The complexes [CeIII{ZnII(L)}2(MeOH)]BPh4 ( 1 ) and [Li(dme)3][CeIII(cot′′)2] ( 1 ; L=N,N,O,O‐tetradentate Schiff base ligand; 2 ; DME=dimethoxyethane, COT′′=1,4‐bis(trimethylsilyl)cyclooctatetraenyldianion), which are reported to be zero‐field and field‐induced SMMs with effective barrier heights of 21.2 and 30 K respectively, were chosen as examples. CASSCF+RASSI/SINGLE_ANISO calculations unequivocally suggest that mJ|±5/2〉 and |±1/2〉 are the ground states for complexes 1 and 2 , respectively. The origin of these differences is rooted back to the nature of the ligand field and the symmetry around the cerium(III) ions. Ab initio magnetisation blockade barriers constructed for complexes 1 and 2 expose a contrasting energy‐level pattern with significant quantum tunnelling of magnetisation between the ground state Kramers doublet in complex 2 . Calculations performed on several model complexes stress the need for a suitable ligand environment and high symmetry around the cerium(III) ions to obtain a large effective barrier.  相似文献   

16.
Numerous studies have underlined the putative diradical character of π‐conjugated molecules that can be described by closed‐shell Lewis structures, for instance, p‐dimethylene p–n phenylenes, or long polyacenes. In the latter compounds, the only way to save the aromaticity of the six‐membered rings is to give up the Lewis electron pairing in the singlet biradical ground state. The present work considers the possibility of doing the same by using the basic C2 units of carbo‐meric architectures. A series of acyclic and cyclic carbo‐meric architectures is studied by using UB3LYP DFT broken‐symmetry calculations, including spin decontaminations and subsequent geometry optimization of the singlet diradical. The C2 units are shown to stabilize the singlet biradical by spin delocalization, two of them playing approximately the same role as one radical‐insulating 1,4 phenylene moiety. The results are generalized to the investigation of open‐shell polyradical singlet states of rigid hydrocarbon structures, the symmetry and rigidity of which can assist cooperativity and self spin polarization effect. Several synthesis targets with challenging magnetic/spin properties are suggested in the carbo‐mer series.  相似文献   

17.
Over the last few years, one of the most important and complex problems facing our society is treating infectious diseases caused by multidrug‐resistant bacteria (MDRB), by using current market‐existing antibiotics. Driven by this need, we report for the first time the development of the multifunctional popcorn‐shaped iron magnetic core–gold plasmonic shell nanotechnology‐driven approach for targeted magnetic separation and enrichment, label‐free surface‐enhanced Raman spectroscopy (SERS) detection, and the selective photothermal destruction of MDR Salmonella DT104. Due to the presence of the “lightning‐rod effect”, the core–shell popcorn‐shaped gold‐nanoparticle tips provided a huge field of SERS enhancement. The experimental data show that the M3038 antibody‐conjugated nanoparticles can be used for targeted separation and SERS imaging of MDR Salmonella DT104. A targeted photothermal‐lysis experiment, by using 670 nm light at 1.5 W cm?2 for 10 min, results in selective and irreparable cellular‐damage to MDR Salmonella. We discuss the possible mechanism and operating principle for the targeted separation, label‐free SERS imaging, and photothermal destruction of MDRB by using the popcorn‐shaped magnetic/plasmonic nanotechnology.  相似文献   

18.
19.
A spin‐crossover cluster with the {FeII4O4} core structure is presented by D. Y. Wu, O. Sato et al. in their Communication on page 1475 ff. The cluster is synthesized by self‐assembly and shows an abrupt spin transition, giving two high‐spin and two low‐spin states. It exhibits complete light‐induced excited spin‐state trapping effects. Importantly, synergy effects between the magnetic interaction and spin transition operate in the cluster.

  相似文献   


20.
We systematically investigate the interactions and magnetic properties of a series of 3d transition‐metal (TM; Sc–Ni) atoms adsorbed on perfect graphene (G6), and on defective graphene with a single pentagon (G5), a single heptagon (G7), or a pentagon–heptagon pair (G57) by means of spin‐polarized density functional calculations. The TM atoms tend to adsorb at hollow sites of the perfect and defective graphene, except for G6Cr, G5Cr, and G5Ni. The binding energies of TMs on defective graphene are remarkably enhanced and show a V‐shape, with GNCr and GNMn having the lowest binding energies. Furthermore, complicated element‐ and defect‐dependent magnetic behavior is observed in GNTM. Particularly, the magnetic moments of GNTM linearly increase by about 1 μB and follow a hierarchy of G7TM<G57TM<G5TM as the TM varies from Sc to Mn, and the magnetic moments begin to decrease afterward; by choosing different types of defects, the magnetic moments can be tuned over a broad range, for example, from 3 to 6 μB for GNCr. The intriguing element‐ and defect‐dependent magnetic behavior is further understood from electron‐ and back‐donation mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号