首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calcium phosphates (CPs), as the major inorganic component of biological hard tissues, have been investigated for applications as biomaterials owing to their excellent biocompatibility. However, the traditional synthetic CPs are usually prepared from inorganic phosphorus and calcium sources. Herein, we report a new strategy for the synthesis of a variety of calcium–phosphate nanostructures, including porous amorphous calcium phosphate (ACP) microspheres, hydroxyapatite (HAP) nanorods, and ACP/HAP composite microspheres, by using fructose 1,6‐bisphosphate trisodium salt (FBP) as an organic phosphorus source in aqueous solution in a rapid microwave‐assisted hydrothermal reaction. The important role of FBP and the effect of the experimental conditions on the formation and evolution of the CPs nanostructures were investigated. The crystal phase and composition of the as‐prepared products were characterized by powder X‐ray diffraction (XRD), FTIR spectroscopy, and thermogravimetric (TGA) analysis and the morphologies of the products were characterized by SEM and TEM. This method is facile, rapid, surfactant‐free, and environmentally friendly. The as‐prepared porous ACP microspheres have a relatively high drug‐loading capacity and good sustained drug‐release behavior; thus, they are promising for applications in drug delivery.  相似文献   

2.
Three‐dimensional (3D) hydroxyapatite (HAP) hierarchical nanostructures, in particular hollow nanostructures, have attracted much attention owing to their potential applications in many biomedical fields. Herein, we report a rapid microwave‐assisted hydrothermal synthesis of a variety of hydroxyapatite hierarchical nanostructures that are constructed by the self‐assembly of nanorods or nanosheets as the building blocks, including HAP nanorod‐assembled hierarchical hollow microspheres (HA‐NRHMs), HAP nanorod‐assembled hierarchical microspheres (HA‐NRMs), and HAP nanosheet‐assembled hierarchical microspheres (HA‐NSMs) by using biocompatible biomolecule pyridoxal‐5′‐phosphate (PLP) as a new organic phosphorus source. The PLP molecules hydrolyze to produce phosphate ions under microwave‐hydrothermal conditions, and the phosphate ions react with calcium ions to form HAP nanorods or nanosheets; then, these nanorods or nanosheets self‐assemble to form 3D HAP hierarchical nanostructures. The preparation method reported herein is time‐saving, with microwave heating times as short as 5 min. The HA‐NRHMs consist of HAP nanorods as the building units, with an average diameter of about 50 nm. The effects of the experimental conditions on the morphology and crystal phase of the products are investigated. The hydrolysis of PLP under microwave‐hydrothermal conditions and the important role of PLP in the formation of 3D HAP hierarchical nanostructures are investigated and a possible formation mechanism is proposed. The products are explored for potential applications in protein adsorption and drug delivery. Our experimental results indicate that the HA‐NRHMs have high drug/protein‐loading capacity and sustained drug‐release behavior. Thus, the as‐prepared HA‐NRHMs are promising for applications in drug delivery and protein adsorption.  相似文献   

3.
We prepared core–shell polymer–silsesquioxane hybrid microcapsules from cage‐like methacryloxypropyl silsesquioxanes (CMSQs) and styrene (St). The presence of CMSQ can moderately reduce the interfacial tension between St and water and help to emulsify the monomer prior to polymerization. Dynamic light scattering (DLS) and TEM analysis demonstrated that uniform core–shell latex particles were achieved. The polymer latex particles were subsequently transformed into well‐defined hollow nanospheres by removing the polystyrene (PS) core with 1:1 ethanol/cyclohexane. High‐resolution TEM and nitrogen adsorption–desorption analysis showed that the final nanospheres possessed hollow cavities and had porous shells; the pore size was approximately 2–3 nm. The nanospheres exhibited large surface areas (up to 486 m2 g?1) and preferential adsorption, and they demonstrated the highest reported methylene blue adsorption capacity (95.1 mg g?1). Moreover, the uniform distribution of the methacryloyl moiety on the hollow nanospheres endowed them with more potential properties. These results could provide a new benchmark for preparing hollow microspheres by a facile one‐step template‐free method for various applications.  相似文献   

4.
In this paper, we report the preparation of γ-Fe(2)O(3) and Fe(3)O(4) magnetic hierarchically nanostructured hollow microspheres by a solvothermal combined with precursor thermal conversion method. These γ-Fe(2)O(3) and Fe(3)O(4) magnetic hierarchically nanostructured hollow microspheres were constructed by three-dimensional self-assembly of nanosheets, forming porous nanostructures. The effects of experimental parameters including molar ratio of reactants and reaction temperature on the precursors were studied. The time-dependent experiments indicated that the Ostwald ripening was responsible for the formation of the hierarchically nanostructured hollow microspheres of the precursors. γ-Fe(2)O(3) and Fe(3)O(4) magnetic hierarchically nanostructured hollow microspheres were obtained by the thermal transformation of the precursor hollow microspheres. Both γ-Fe(2)O(3) and Fe(3)O(4) hierarchically nanostructured hollow microspheres exhibited a superparamagnetic property at room temperature and had the saturation magnetization of 44.2 and 55.4emu/g, respectively, in the applied magnetic field of 20 KOe. Several kinds of organic pollutants including salicylic acid (SA), methylene blue (MB), and basic fuchsin (BF) were chosen as the model water pollutants to evaluate the removal abilities of γ-Fe(2)O(3) and Fe(3)O(4) magnetic hierarchically nanostructured hollow microspheres. It was found that γ-Fe(2)O(3) hierarchically nanostructured hollow microspheres showed a better adsorption ability over SA than MB and BF. However, Fe(3)O(4) hierarchically nanostructured hollow microspheres had the best performance for adsorbing MB.  相似文献   

5.
Drug nanocarriers with magnetic targeting and pH‐responsive drug‐release behavior are promising for applications in controlled drug delivery. Magnetic iron oxides show excellent magnetism, but their application in drug delivery is limited by low drug‐loading capacity and poor control over drug release. Herein, core–shell hollow microspheres of magnetic iron oxide@amorphous calcium phosphate (MIO@ACP) were prepared and investigated as magnetic, pH‐responsive drug nanocarriers. Hollow microspheres of magnetic iron oxide (HMIOs) were prepared by etching solid MIO microspheres in hydrochloric acid/ethanol solution. After loading a drug into the HMIOs, the drug‐loaded HMIOs were coated with a protective layer of ACP by using adenosine 5′‐triphosphate (ATP) disodium salt (Na2ATP) as stabilizer, and drug‐loaded core–shell hollow microspheres of MIO@ACP (HMIOs/drug/ACP) were obtained. The as‐prepared HMIOs/drug/ACP drug‐delivery system exhibits superparamagnetism and pH‐responsive drug‐release behavior. In a medium with pH 7.4, drug release was slow, but it was significantly accelerated at pH 4.5 due to dissolution of the ACP shell. Docetaxel‐loaded core–shell hollow microspheres of MIO@ACP exhibited high anticancer activity.  相似文献   

6.
Highly stable amorphous calcium phosphate (ACP) porous nanospheres with a relatively uniform size and an average pore diameter of about 10 nm have been synthesized by using a microwave‐assisted hydrothermal method with adenosine 5′‐triphosphate disodium salt (ATP) as the phosphorus source and stabilizer. The as‐prepared ACP porous nanospheres have a high stability in the phosphate buffer saline (PBS) solution for more than 150 h without phase transformation to hydroxyapatite, and the morphology and size were essentially not changed. The important role of ATP and effects of experimental conditions on the formation of ACP porous nanospheres were also investigated. The ACP porous nanospheres were characterized by X‐ray powder diffraction (XRD), Fourier‐transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). This method is facile, rapid, surfactant‐free and environmentally friendly. The as‐prepared ACP porous nanospheres are efficient for anticancer drug (docetaxel) loading and release. The ACP porous nanosphere drug‐delivery system with docetaxel shows a high ability to damage tumor cells, thus, is promising for the application in anticancer treatment.  相似文献   

7.
A facile and environmentally friendly approach has been developed to prepare yolk‐shell porous microspheres of calcium phosphate by using calcium L ‐lactate pentahydrate (CL) as the calcium source and adenosine 5′‐triphosphate disodium salt (ATP) as the phosphate source through the microwave‐assisted hydrothermal method. The effects of the concentration of CL, the microwave hydrothermal temperature, and the time on the morphology and crystal phase of the product are investigated. The possible formation mechanism of yolk‐shell porous microspheres of calcium phosphate is proposed. Hemoglobin from bovine red cells (Hb) and ibuprofen (IBU) are used to explore the application potential of yolk‐shell porous microspheres of calcium phosphate in protein/drug loading and delivery. The experimental results indicate that the as‐prepared yolk‐shell porous microspheres of calcium phosphate have relatively high protein/drug loading capacity, sustained protein/drug release, favorable pH‐responsive release behavior, and a high biocompatibility in the cytotoxicity test. Therefore, the yolk‐shell porous microspheres of calcium phosphate have promising applications in various biomedical fields such as protein/drug delivery.  相似文献   

8.
Monodisperse hollow carbon nanocapsules (<200 nm) with mesoporous shells were synthesized by coating their outer shells with silica to prevent aggregation during their high‐temperature annealing. Monodispersed silica nanoparticles were used as starting materials and octadecyltrimethoxysilane (C18TMS) was used as a carbon source to create core–shell nanostructures. These core–shell nanoparticles were coated with silica on their outer shell to form a second shell layer. This outer silica shell prevented aggregation during calcination. The samples were characterized by TEM, SEM, dynamic light scattering (DLS), UV/Vis spectroscopy, and by using the Brunauer–Emmett–Teller (BET) method. The as‐synthesized hollow carbon nanoparticles exhibited a high surface area (1123 m2 g?1) and formed stable dispersions in water after the pegylation process. The drug‐loading and drug‐release properties of these hollow carbon nanocapsules were also investigated.  相似文献   

9.
A novel chemically modified electrode for stripping determination of cadmium is presented in this paper, based on carbon nanotube‐hydroxyapatite (CNT‐HAP) nanocomposite, which can be prepared by an easy and effective one‐step sonication. The newly synthesized nanocomposite was characterized with FTIR, TEM, and electrochemical methods. Due to the combination of the strong absorption ability of HAP and excellent electroanalytical properties of CNTs, the GC/CNT‐HAP electrode has been successfully used for determination of Cd2+ by anodic stripping voltammetry with a linear range of 20 nM–3 μM. The sensitivity and detection limit are 25.6 μA/μM and 4 nM, respectively. The practical application of the proposed electrode has been carried out for the determination of trace levels of Cd2+ in real water samples.  相似文献   

10.
We have successfully prepared biocompatible and biodegradable hollow microspheres using carboxyl‐functionalized polystyrene particles as core template and the chitosan cross‐linked with glutaraldehyde as the shell. The monodisperse carboxyl‐functionalized polystyrene particles were made by emulsifier‐free emulsion polymerization. The structure, morphology, and constitution of the carboxyl‐functionalized polystyrene particles were characterized by FTIR, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X‐ray photoelectron spectroscopy (XPS). The structure, morphology, and formation process of the hollow cross‐linked chitosan microspheres were characterized by FTIR, SEM, and TEM. The results revealed that the latex particles were removed by exposed to solvent and the microspheres exhibited the hollow structure. This work confirmed that the hollow microspheres were accomplished by fabricating on the basis of chemical cross‐linking on the surface of the carboxyl‐functionalized polystyrene particles and then removing off the cores of particles. Moreover, with the increase of carboxyl‐functionalization degree at the surface of latexes and the increase of cross‐linking period, the thicker and firmer monodisperse hollow microspheres were obtained. In addition, a water‐soluble drug, salicylic acid, encapsulated in the microcapsules slowly released at pH 1.2. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 228–237, 2008  相似文献   

11.
Porous polymer microspheres (PPMs) have been widely applied in various biomedical fields. Herein, the self‐assisted preparation of poly(ester‐thioether)‐based porous microspheres and hierarchical microcages, whose pore sizes can be controlled by varying the polymer structures, is reported. Poly(ester‐thioether)s with alkyl side chains (carbon atom numbers were 2, 4, and 8) can generate hollow porous microspheres; the longer alkyl chain length, the larger pore size of microspheres. The allyl‐modified poly(ester‐thioether) (PHBDT‐g‐C3) can form highly open, hierarchically interconnected microcages. A formation mechanism of these PPMs is proposed; the hydrophobic side chains‐mediated stabilization of oil droplets dictate the droplet aggregation and following solvent evaporation, which is the key to the formation of PPMs. The hierarchically interconnected microcages of PHBDT‐g‐C3 are due to the partially crosslinking of polymers. Pore sizes of PPMs can be further tuned by a simple mixing strategy of poly(ester‐thioether)s with different pore‐forming abilities. The potential application of these PPMs as H2O2‐responsive vehicles for delivery of hydrophobic (Nile Red) and hydrophilic (doxorubicin hydrochloride) cargos is also investigated. The microspheres with larger pore sizes show faster in vitro drug release. The poly(ester‐thioether)‐based polymer microspheres can open a new avenue for the design of PPMs and provide a H2O2‐responsive drug delivery platform.  相似文献   

12.
A convenient method for the confined incorporation of highly active bimetallic PdCo nanocatalysts within a hollow and porous metal–organic framework (MOF) support is presented. Several chemical conversions occur simultaneously during the one‐step low temperature pyrolysis of well‐designed polystyrene@ZIF‐67/Pd2+ core–shell microspheres, where ZIF (zeolitic imidazolate framework) is a subclass of MOF: the polystyrene core is removed, resulting in a beneficial hollow and porous ZIF support; the ZIF‐67 shell acts as a well‐defined porous support and as a felicitous Co2+ supplier for metal nanoparticle formation; and Pd2+ and Co2+ are reduced to form catalytically active bimetallic PdCo nanoparticles in the well‐defined micropores, inducing the confined growth of PdCo nanoparticles with excellent dispersity.  相似文献   

13.
Porous copper oxide (CuO) hollow microspheres have been fabricated through a simple hydrothermal method using PS latex as templates. The as-obtained samples were characterized by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffractometry (XRD) and Fourier transform infrared spectroscopy (FTIR). The influences of the mole ratio of Ethylenediamine (C2H8N2) and copper acetate (Cu(Ac)2·H2O), hydrothermal temperature and time on the size and morphologies of the final products have been investigated. The possible formation mechanism of porous CuO hollow microspheres has been proposed and the specific surface area of the hollow microspheres with 81.71 m2/g is measured by BET method. The band gap value calculated from a UV–vis absorption spectrum of porous CuO hollow microspheres is 2.71 eV. The as-synthesized product exhibits high photocatalytic activity during the photodegradation of an organic dyestuff, rhodamine B (RhB), under UV-light illumination.  相似文献   

14.
Preparation of PLGA microspheres with different porous morphologies   总被引:1,自引:0,他引:1  
甘志华  王峰 《高分子科学》2015,33(1):128-136
Poly(D,L-lactide-co-glycolide)(PLGA) microspheres were prepared by emulsion solvent evaporation method. The influences of inner aqueous phase, organic solvent, PLGA concentration on the morphology of microspheres were studied. The results showed that addition of porogen or surfactants to the inner aqueous phase, types of organic solvents and polymer concentration affected greatly the microsphere morphology. When dichloromethane was adopted as organic solvent, microspheres with porous structure were produced. When ethyl acetate served as organic solvent, two different morphologies were obtained. One was hollow microspheres with thin porous shell under a lower PLGA concentration, another was erythrocyte-like microspheres under a higher PLGA concentration. Three types of microspheres including porous, hollow core with thin porous shell(denoted by hollow in brief) and solid structures were finally selected for in vitro drug release tests. Bovine serum albumin(BSA) was chosen as model drug and encapsulated within the microspheres. The BSA encapsulation efficiency of porous, hollow and solid microspheres was respectively 90.4%, 79.8% and 0. And the ultimate accumulative release was respectively 74.5%, 58.9% and 0. The release rate of porous microspheres was much slower than that of hollow microspheres. The experiment results indicated that microspheres with different porous structures showed great potentials in controlling drug release behavior.  相似文献   

15.
Nearly monodispersed silica-poly(methacrylic acid) (SiO 2-PMAA) core-shell microspheres were synthesized by distillation-precipitation polymerization from 3-(trimethoxysilyl)propylmethacrylate-silica (SiO 2-MPS) particle templates. SiO 2-PMAA-SiO 2 trilayer hybrid microspheres were subsequently prepared by coating of an outer layer of SiO 2 on the SiO 2-PMAA core-shell microspheres in a sol-gel process. pH-Responsive PMAA hollow microspheres with flexible (deformable) shells were obtained after selective removal of the inorganic SiO 2 core from the SiO 2-PMAA core-shell microspheres by HF etching. The pH-responsive properties of the PMAA hollow microspheres were investigated by dynamic laser scattering (DLS). On the other hand, concentric and rigid hollow silica microspheres were prepared by selective removal of the PMAA interlayer from the SiO 2-PMAA-SiO 2 trilayer hybrid microspheres during calcination. The hybrid composite microspheres, pH-sensitive hollow microspheres, and concentric hollow silica microspheres were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and energy-dispersive X-ray (EDX) analysis.  相似文献   

16.
Flower‐like nanostructured hydroxyapatite hollow spheres (NHHS) assembled with nanosheets with a hierarchical morphology are fabricated by a rapid microwave‐assisted hydrothermal route. The presence and concentration of block copolymer poly(lactide)‐block‐poly(ethylene glycol) (PLA–PEG) are important parameters for the formation of the hollow structure. The possible formation mechanism of NHHS is proposed. The NHHS are explored as anticancer drug carriers for cellular delivery of mitoxantrone (MIT). The MIT‐loaded NHHS exhibit sustained‐drug‐release behavior in vitro and the intracellular drug‐distribution tests indicate that the MIT loaded in NHHS carriers can enter the cells efficiently. The experiments also show that the NHHS have a good biocompatibility, and therefore, they are promising anticancer drug carriers in cancer chemotherapy.  相似文献   

17.
Raspberrylike organic/inorganic composite spheres are prepared by stepwise electrostatic assembly of polyelectrolytes and silica nanoparticles onto monodisperse polystyrene spheres. Hierarchically structured porous films of silica hollow spheres are fabricated from these composite spheres by layer‐by‐layer assembly with polyelectrolytes followed by calcination. The morphologies of the raspberrylike organic/inorganic composite spheres and the derived hierarchically structured porous films are observed by scanning and transmission electron microscopy. The surface properties of these films are investigated by measuring their water contact angles, water‐spreading speed, and antifogging properties. The results show that such hierarchically structured porous films of silica hollow spheres have unique superhydrophilic and antifogging properties. Finally, the formation mechanism of these nanostructures and property–structure relationships are discussed in detail on the basis of experimental observations.  相似文献   

18.
Poly(divinylbenzene-co-acrylic acid) (poly(DVB-co-AA)) hollow microspheres with movable poly(DVB-co-AA) cores were prepared by a facile route. In this approach, poly(DVB-co-AA) microspheres were first used as templates to synthesize poly(DVB-co-AA)@PAA core-shell particles with a non-crosslinked PAA shell by distillation precipitation polymerization in acetonitrile. In situ polymerization to prepare poly(DVB-co-AA)@PAA@poly(DVB-co-AA) trilayer microspheres was then developed, in which the hydrogen-bonding interaction between the carboxylic acid groups played a key role as the driving force for the formation of monodisperse trilayer structure polymer microspheres. After removal of the non-crosslinked poly(acrylic acid) (PAA) midlayer of the poly(DVB-co-AA)@PAA@poly(DVB-co-AA) microspheres in ethanol under basic conditions, poly(DVB-co-AA) hollow microspheres with movable poly(DVB-co-AA) cores were obtained. Functional poly(DVB-co-AA) cores could be released successfully when the hollow structure was destroyed. The resultant core-shell, trilayer polymer microspheres and hollow polymer microspheres with movable cores were characterized by transmission electron microscopy (TEM), dynamic laser scattering (DLS), and Fourier transform infrared (FT-IR) spectra.  相似文献   

19.
In this paper, a strategy for hollow porous silica microspheres with ideally flower structure is presented. SiO(2)/PAM hybrid composite microspheres with porous were synthesized by the reaction that the porous polyacrylamide (PAM) micro-gels immersed in tetraethoxysilane (TEOS) anhydrous alcohol solution and water in a moist atmosphere, with ammonium hydroxide as a catalyst. The SiO(2) hollow microspheres with porous were obtained after calcination of the composite microspheres at 550 °C for 4 h. The morphology, composition, and crystalline structure of the microspheres were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermo-gravimetric analysis (TGA), Fourier transform infrared spectroscopy (FI-IR), and X-ray diffraction (XRD), N(2) absorption analysis, respectively. The results indicated that the obtained hollow porous SiO(2) microspheres were a perfect flower structure.  相似文献   

20.
Herein we report a rapid and green strategy for the preparation of amorphous calcium phosphate mesoporous microspheres (ACP‐MSs) using adenosine 5′‐diphosphate disodium salt (ADP) as an organic phosphorus source by a microwave‐assisted hydrothermal method. The effects of the pH value, the reaction time, and temperature on the crystal phase and morphology of the product are investigated. The ADP biomolecules used in this strategy play an important role in the formation of ACP‐MSs. The as‐prepared ACP‐MSs are efficient for anticancer drug delivery by using doxorubicin (Dox) as a model drug, and the Dox‐loaded ACP‐MSs show a high ability to damage cancer cells. Moreover, the ACP‐MSs drug delivery system exhibits a pH‐responsive drug‐release behavior due to the degradation of ACP‐MSs at a low pH value, thus, it is promising for applications in pH‐responsive drug delivery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号