首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
Several phosphonium and ammonium triarylborohydrides, which are intermediates in hydrogenation reactions catalyzed by frustrated Lewis pairs, were synthesized in high yield under mild conditions from triaryl boranes, ammonium or phosphonium halides, and triethylsilane. The kinetics and mechanisms of the reactions of these hydridoborate salts with benzhydrylium ions, iminium ions, quinone methides, and Michael acceptors were investigated, and their nucleophilicity was determined and compared with that of other hydride donors.  相似文献   

3.
The use of alkenyl arenes as dipolarophiles in the catalytic asymmetric 1,3‐dipolar cycloaddition of azomethine ylides is reported. Under appropriate reaction conditions with a CuI or AgI catalyst either the exo or the endo adduct was obtained with high stereoselectivity. This process provides efficient access to highly enantiomerically enriched 4‐aryl proline derivatives. The observed results are compatible with the blockage of one prochiral face of the 1,3‐dipole, as well as with the efficient transmission of electrophilicity towards the terminal carbon atom of the dipolarophile. This polarization results in a change from a concerted to a stepwise mechanism.  相似文献   

4.
Two domino Diels–Alder adducts were obtained from 3,7‐bis(cyclopenta‐2,4‐dien‐1‐ylidene)‐cis‐bicyclo[3.3.0]octane and dimethyl acetylenedicarboxylate or N‐methylmaleimide under microwave irradiation. From the first adduct, a C20H24 diene with C2v symmetry was obtained by Zn/AcOH reduction, hydrolysis, oxidative decarboxylation, and selective hydrogenation. Photochemical [2+2] cycloaddition of this diene gave a thermally unstable cyclobutane derivative, which reverts to the diene. However, both the diene and the cyclobutane derivatives could be identified by X‐ray diffraction analysis upon irradiation of the diene crystal. New six‐membered rings are formed upon the transannular addition of bromine or iodine to the diene. The N‐type selectivity of the addition was examined by theoretical calculations, which revealed the distinct susceptibility of the doubly bonded carbon atoms to the bromine attack.  相似文献   

5.
The reactions of several thioketones containing a conjugated C?C bond with diazo compounds were investigated. All of the selected compounds reacted via a 1,3‐dipolar cycloaddition with the C?S group and subsequent N2 elimination to yield thiocarbonyl ylides as intermediates, which underwent a 1,3‐dipolar electrocyclization to give the corresponding thiirane 25 , or, by a subsequent desulfurization, to give the olefins 33a and 33b . None of the intermediate thiocarbonyl ylides reacted via 1,5‐dipolar electrocyclization. If the α,β‐unsaturated thiocarbonyl compound bears an amino group in the β‐position, the reactions with diazo compounds led to the 2,5‐dihydrothiophenes 40a – 40d . In these cases, the proposed mechanism of the reactions led once more to the thiocarbonyl ylides 36 and thiiranes 38 , respectively. The thiiranes reacted via an SNi′‐like mechanism to give the corresponding thiolate/ammonium zwitterion 39 , which underwent a ring closure to yield the 2,5‐dihydrothiophenes 40 . Also in these cases, no 1,5‐dipolar electrocyclization could be observed. The structures of several key products were established by X‐ray crystallography.  相似文献   

6.
7.
Consecutive C‐ and Narylation of N‐heterocyclic nitriles is mediated by titanium(IV) alkoxides. The carbo‐ and azaphilic arylation step may be separated by choosing the order in which the two equivalents of aryl transfer reagent are added. In the course of this transformation, the ancillary N‐heterocycle acts as both a directing anchor group and electron reservoir. In the selectivity‐determining step, the selectivity is governed by a choice between (direct) C‐ and Ti‐arylation; the latter opens up a reaction pathway that allows further migration to the nitrogen atom. The isolation of metal‐containing aggregates from the reaction mixture and computational studies gave insights into the reaction mechanism. Subsequently, a multicomponent one‐pot protocol was devised to rapidly access complex quaternary carbon centers.  相似文献   

8.
The thermal reaction of trans‐1‐methyl‐2,3‐diphenylaziridine (trans‐ 1a ) with aromatic and cycloaliphatic thioketones 2 in boiling toluene yielded the corresponding cis‐2,4‐diphenyl‐1,3‐thiazolidines cis‐ 4 via conrotatory ring opening of trans‐ 1a and a concerted [2+3]‐cycloaddition of the intermediate (E,E)‐configured azomethine ylide 3a (Scheme 1). The analogous reaction of cis‐ 1a with dimethyl acetylenedicarboxylate ( 5 ) gave dimethyl trans‐2,5‐dihydro‐1‐methyl‐2,5‐diphenylpyrrole‐3,4‐dicarboxylate (trans‐ 6 ) in accord with orbital‐symmetry‐controlled reactions (Scheme 2). On the other hand, the reactions of cis‐ 1a and trans‐ 1a with dimethyl dicyanofumarate ( 7a ), as well as that of cis‐ 1a and dimethyl dicyanomaleate ( 7b ), led to mixtures of the same two stereoisomeric dimethyl 3,4‐dicyano‐1‐methyl‐2,5‐diphenylpyrrolidine‐3,4‐dicarboxylates 8a and 8b (Scheme 3). This result has to be explained via a stepwise reaction mechanism, in which the intermediate zwitterions 11a and 11b equilibrate (Scheme 6). In contrast, cis‐1,2,3‐triphenylaziridine (cis‐ 1b ) and 7a gave only one stereoisomeric pyrrolidine‐3,4‐dicarboxylate 10 , with the configuration expected on the basis of orbital‐symmetry control, i.e., via concerted reaction steps (Scheme 10). The configuration of 8a and 10 , as well as that of a derivative of 8b , were established by X‐ray crystallography.  相似文献   

9.
An efficient method for the phosphine‐catalyzed [3+2] cycloaddition reaction of azomethine imines with diphenylsulfonyl alkenes to give dinitrogen‐fused bi‐ or tricyclic heterocyclic compounds in high yields has been described. Moreover, two phenylsulfonyl groups installed on the heterocyclic products could be conveniently removed or transformed to other functional groups, making the reaction more useful.  相似文献   

10.
11.
A highly enantioselective gold(I)‐catalyzed intermolecular annulation of 2‐(1‐alkynyl)‐2‐alken‐1‐ones with N‐allenamides is presented. The present work represents the first example of a gold‐catalyzed annulation with the proximal C?C bond of an N‐allenamide, and is distinctly different from the previously observed annulations at the distal C?C bond. Interestingly, both enantiomers of the products could be obtained in good yields with high regio‐, diastereo‐, and enantioselectivity by using either diastereomer of a binol‐derived phosphoramidite as a chiral ligand.  相似文献   

12.
A light touch is all that is required to cleave a maleimide C? N bond to effect a [5+2] photocycloaddition with a sterically encumbered C?N moiety (see scheme).

  相似文献   


13.
A catalytic asymmetric formal [3+3] cycloaddition of 3‐indolylmethanol and an in situ‐generated azomethine ylide has been established to construct a chiral six‐membered piperidine framework with two stereogenic centers. This approach not only represents the first enantioselective cycloaddition of isatin‐derived 3‐indolylmethanol, but also has realized an unusual enantioselective formal [3+3] cycloaddition of azomethine ylide rather than its common [3+2] cycloadditions. Besides, this protocol combines the merits of a multicomponent reaction and organocatalysis, which efficiently assembles a variety of isatin‐derived 3‐indolylmethanols, aldehydes, and amino esters into structurally diverse spiro[indoline‐3,4′‐pyridoindoles] with one all‐carbon quaternary stereogenic center in high yields and excellent enantioselectivities (up to 93 % yield, >99 % enantiomeric excess (ee)). Although the diastereoselectivity of the reaction is generally moderate, most of the diastereomers can be separated by using column chromatography followed by preparative TLC.  相似文献   

14.
15.
16.
Unusual chemical transformations such as three‐component combination and ring‐opening of N‐heterocycles or formation of a carbon–carbon double bond through multiple C–H activation were observed in the reactions of TpMe2‐supported yttrium alkyl complexes with aromatic N‐heterocycles. The scorpionate‐anchored yttrium dialkyl complex [TpMe2Y(CH2Ph)2(THF)] reacted with 1‐methylimidazole in 1:2 molar ratio to give a rare hexanuclear 24‐membered rare‐earth metallomacrocyclic compound [TpMe2Y(μN,C‐Im)(η2N,C‐Im)]6 ( 1 ; Im=1‐methylimidazolyl) through two kinds of C–H activations at the C2‐ and C5‐positions of the imidazole ring. However, [TpMe2Y(CH2Ph)2(THF)] reacted with two equivalents of 1‐methylbenzimidazole to afford a C–C coupling/ring‐opening/C–C coupling product [TpMe2Y{η3‐(N,N,N)‐N(CH3)C6H4NHCH?C(Ph)CN(CH3)C6H4NH}] ( 2 ). Further investigations indicated that [TpMe2Y(CH2Ph)2(THF)] reacted with benzothiazole in 1:1 or 1:2 molar ratio to produce a C–C coupling/ring‐opening product {(TpMe2)Y[μ‐η21‐SC6H4N(CH?CHPh)](THF)}2 ( 3 ). Moreover, the mixed TpMe2/Cp yttrium monoalkyl complex [(TpMe2)CpYCH2Ph(THF)] reacted with two equivalents of 1‐methylimidazole in THF at room temperature to afford a trinuclear yttrium complex [TpMe2CpY(μ‐N,C‐Im)]3 ( 5 ), whereas when the above reaction was carried out at 55 °C for two days, two structurally characterized metal complexes [TpMe2Y(Im‐TpMe2)] ( 7 ; Im‐TpMe2=1‐methyl‐imidazolyl‐TpMe2) and [Cp3Y(HIm)] ( 8 ; HIm=1‐methylimidazole) were obtained in 26 and 17 % isolated yields, respectively, accompanied by some unidentified materials. The formation of 7 reveals an uncommon example of construction of a C?C bond through multiple C–H activations.  相似文献   

17.
18.
[Cp*RhIII]‐catalyzed C? H activation of arenes assisted by an oxidizing N? O or N? N directing group has allowed the construction of a number of hetercycles. In contrast, a polar N? O bond is well‐known to undergo O‐atom transfer (OAT) to alkynes. Despite the liability of N? O bonds in both C? H activation and OAT, these two important areas evolved separately. In this report, [Cp*RhIII] catalysts integrate both areas in an efficient redox‐neutral coupling of quinoline N‐oxides with alkynes to afford α‐(8‐quinolyl)acetophenones. In this process the N? O bond acts as both a directing group for C? H activation and as an O‐atom donor.  相似文献   

19.
Acylsilanes are known to undergo a 1,2‐silicon‐to‐oxygen migration under thermal or photochemical conditions to form siloxycarbenes. However, there are few reports regarding the application of siloxycarbenes in organic synthesis and surprisingly, their reaction with C? C double or triple bonds remains virtually unexplored. To facilitate such a study, previously inaccessible aromatic acylsilanes containing an ortho‐tethered C? C double bond were identified as suitable substrates. To access these key intermediates, we developed a new synthetic method utilizing a rhodium‐catalyzed oxidative Heck‐type olefination involving the application of an acylsilane moiety as a directing group. When exposed to visible‐light irradiation, the ortho‐olefinated acylsilanes underwent a smooth intramolecular cyclization process to afford valuable indanone derivatives in quantitative yields. This result paves the way for the development of new transformations involving siloxycarbene intermediates.  相似文献   

20.
X‐ray structure determinations on four Diels–Alder adducts derived from the reactions of cyano‐ and ester‐substituted alkenes with anthracene and 9,10‐dimethylanthracene have shown the bonds formed in the adduction to be particularly long. Their lengths range from 1.58 to 1.62 Å, some of the longest known for Diels–Alder adducts. Formation of the four adducts is detectably reversible at ambient temperature and is associated with free energies of reaction ranging from ?2.5 to ?40.6 kJ mol?1. The solution equilibria have been experimentally characterised by NMR spectroscopy. Density‐functional‐theory calculations at the MPW1K/6‐31+G(d,p) level with PCM solvation agree with experiment with average errors of 6 kJ mol?1 in free energies of reaction and structural agreement in adduct bond lengths of 0.013 Å. To understand more fully the cause of the reversibility and its relationship to the long adduct bond lengths, natural‐bond‐orbital (NBO) analysis was applied to quantify donor–acceptor interactions within the molecules. Both electron donation into the σ*‐anti‐bonding orbital of the adduct bond and electron withdrawal from the σ‐bonding orbital are found to be responsible for this bond elongation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号