首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Ruthenium porphyrins (particularly [Ru(2,6‐Cl2tpp)CO]; tpp=tetraphenylporphinato) and RuCl3 can act as oxidation and/or Lewis acid catalysts for direct C‐3 alkylation of indoles, giving the desired products in high yields (up to 82 % based on 60–95 % substrate conversions). These ruthenium compounds catalyze oxidative coupling reactions of a wide variety of anilines and indoles bearing electron‐withdrawing or electron‐donating substituents with high regioselectivity when using tBuOOH as an oxidant, resulting in the alkylation of N‐arylindoles to 3‐{[(N‐aryl‐N‐alkyl)amino]methyl}indoles (yield: up to 82 %, conversion: up to 95 %) and the alkylation of N‐alkyl or N‐H indoles to 3‐[p‐(dialkylamino)benzyl]indoles (yield: up to 73 %, conversion: up to 92 %). A tentative reaction mechanism involving two pathways is proposed: an iminium ion intermediate may be generated by oxidation of an sp3 C? H bond of the alkylated aniline by an oxoruthenium species; this iminium ion could then either be trapped by an N‐arylindole (pathway A) or converted to formaldehyde, allowing a subsequent three‐component coupling reaction of the in situ generated formaldehyde with an N‐alkylindole and an aniline in the presence of a Lewis acid catalyst (pathway B). The results of deuterium‐labeling experiments are consistent with the alkylation of N‐alkylindoles via pathway B. The relative reaction rates of [Ru(2,6‐Cl2tpp)CO]‐catalyzed oxidative coupling reactions of 4‐X‐substituted N,N‐dimethylanilines with N‐phenylindole (using tBuOOH as oxidant), determined through competition experiments, correlate linearly with the substituent constants σ (R2=0.989), giving a ρ value of ?1.09. This ρ value and the magnitudes of the intra‐ and intermolecular deuterium isotope effects (kH/kD) suggest that electron transfer most likely occurs during the initial stage of the oxidation of 4‐X‐substituted N,N‐dimethylanilines. Ruthenium‐catalyzed three‐component reaction of N‐alkyl/N‐H indoles, paraformaldehyde, and anilines gave 3‐[p‐(dialkylamino)benzyl]indoles in up to 82 % yield (conversion: up to 95 %).  相似文献   

2.
This study sheds light on the cleavage and reorganization of C(sp3)? H and C?N bonds of carbodiimides in a three‐component reaction of terminal alkynes, sulfur, and carbodiimides by a combination of methods including 1) isolation and X‐ray analysis of six‐membered‐ring lithium species 2‐S , 2) trapping of the oxygen‐analogues ( B‐O and D‐O ) of both four‐membered‐ring intermediate B‐S and ring‐opening intermediate D‐S , 3) deuterium labeling studies, and 4) theoretical studies. These results show that 1) the reaction rate‐determining step is [2+2] cycloaddition, 2) the C?N bond cleavage takes place before C(sp3)? H bond cleavage, 3) the hydrogen attached to C6 in 2‐S originates from the carbodiimide, and 4) three types of new aza‐heterocycles, such as 1,2‐dihydrothiopyrimidines, N‐acyl 2,3‐dihydropyrimidinthiones, and 1,2‐dihydropyrimidinamino acids are constructed efficiently based on 2‐S . All results strongly support the idea that the reaction proceeds through [2+2] cycloaddition/4π electrocyclic ring‐opening/1,5‐H shift/6π electrocyclic ring‐closing as key steps. The research strategy on the synthesis, isolation, and reactivity investigation of important intermediates in metal‐mediated reactions not only helps achieve an in‐depth understanding of reaction mechanisms but also leads to the discovery of new synthetically useful reactions based on the important intermediates.  相似文献   

3.
A series of 3‐substituted 2‐thioxo‐2,3‐dihydro‐1H‐benzo[g]quinazolin‐4‐ones 4a – e were synthesized from the reaction of 3‐aminonaphthalene‐2‐carboxylic acid 1 with isothiocyanate derivatives 2a – e . The alkylation of 4a – e with alkyl halides gave 3‐substituted 2‐alkylsulfanyl‐2,3‐dihydro‐1H‐benzo[g]quinazolin‐4‐ones 5a – o . S‐Glycosylation was carried out via the reaction of 4a – e with glycopyranosyl bromides 7a and 7b under anhydrous alkaline conditions. The structure of the compounds was established as S‐nucleoside and not N‐nucleoside. Conformational analysis has been studied by homonuclear and heteronuclear two‐dimensional NMR methods (2D DFQ‐COSY, heteronuclear multiple quantum coherence, and heteronuclear multiple bond correlation). The S site of alkylation and glycosylation was determined from the 1H and 13C heteronuclear multiple quantum coherence experiments.  相似文献   

4.
A stable cyclic (alkyl)(amino)carbene (CAAC) 1 inserts into the para‐CF bond of pentafluoropyridine, and after fluoride abstraction, the iminium‐pyridyl adduct [ 3 ]+ was isolated. A cyclic voltammetry study shows a reversible three‐state redox system involving [ 3 ]+, [ 3 ] ? , and [ 3 ] ? . The CAAC‐pyridyl radical [ 3 ] ? , obtained by reduction of [ 3 ]+ with magnesium, has been spectroscopically and crystallographically characterized. In contrast to the lack of π communication between the CAAC and the pyridine units in cation [ 3 ]+, the unpaired electron of [ 3 ] ? is delocalized over an extended π system involving both heterocycles.  相似文献   

5.
A coordinatively unsaturated iron‐methyl complex having an N‐heterocyclic carbene ligand, [Cp*Fe(LMe)Me] ( 1 ; Cp*=η5‐C5Me5, LMe=1,3,4,5‐tetramethyl‐imidazol‐2‐ylidene), is synthesized from the reaction of [Cp*Fe(TMEDA)Cl] (TMEDA=N,N,N′,N′‐tetramethylethylenediamine) with methyllithium and LMe. Complex 1 is found to activate the C? H bonds of furan, thiophene, and benzene, giving rise to aryl complexes, [Cp*Fe(LMe)(aryl)] (aryl=2‐furyl ( 2 ), 2‐thienyl ( 3 ), phenyl ( 4 )). The C? H bond cleavage reactions are applied to the dehydrogenative coupling of furans or thiophenes with pinacolborane (HBpin) in the presence of tert‐butylethylene and a catalytic amount of 1 (10 mol % to HBpin). The borylation of the furan/thiophene or 2‐substituted furans/thiophenes occurs exclusively at the 2‐ or 5‐positions, respectively, whereas that of 3‐substituted furans/thiophenes takes place mainly at the 5‐position and gives a mixture of regioisomers. Treatment of 2 with 2 equiv of HBpin results in the quantitative formation of 2‐boryl‐furan and the borohydride complex [Cp*Fe(LMe)(H2Bpin)] ( 5 ). Heating a solution of 5 in the presence of tert‐butylethylene led to the formation of an alkyl complex [Cp*Fe(LMe)CH2CH2tBu] ( 6 ), which was found to cleave the C? H bond of furan to produce 2 . On the basis of these results, a possible catalytic cycle is proposed.  相似文献   

6.
Flax cyclic peptides (orbitides, linusorbs (LOs)) [1–8‐NαC],[1‐MetO2]‐linusorb B1 ([MetO2]‐LO1) and [1–9‐NαC],[1‐MetO2]‐linusorb B2 ([MetO2]‐LO2) are biologically active. These LOs lack active nuclei commonly used in peptide modification. We have developed reactions to activate methionine methyl sulphide to produce stable derivatives. In these reactions, LOs are converted to sulfonium intermediates and subsequently to derivatives containing active nuclei while preserving their fundamental structures. The reaction conditions preserved cyclic peptide fundamental structure and organic solvent solubility. [Met]‐LO1 and [Met]‐LO2 analogues containing activated groups (?CN, ?COOEt, and ?NH2) in the form of methionine, methionine (S)‐oxide, and methionine (S,S)‐dioxide amino acids were synthesized and characterized by LCMS and 1D and 2D NMR spectroscopy. Coumarin orbitide complexes produced in this manner bind Eu3+ yielding FRET compounds that absorb energy through coumarin antennae and emit photons at lanthanide wavelengths.  相似文献   

7.
Treatment of Pd(PPh3)4 with phenylchlorothionoformate, PhOC(S)Cl, in dichloromethane at ?20 °C produces the phenyloxythiocarbonyl complex [Pd(PPh3)21‐C(S)OPh}(Cl)], 1 . The 31P{1H} NMR spectrum of 1 shows the dissociation of either the chloride or the triphenylphosphine ligand to form complex [Pd(PPh3)22‐SCOPh)][Cl], 2 or the dipalladium complex [Pd(PPh3)Cl]2(μ,η2‐SCOPh)2, 3 . Continuous stirring of the dichloromethane solution of 1 at room temperature for 4 h forms the dipalladinum complex [Pd(PPh3)Cl]2(μ,η2‐SCOPh)2, 3 as the final product. Respective reactions of 1 and Et2NCS2Na or dppa {bis(diphenylphosphino)amine} gives complex [Pd(PPh3){η1‐C(S)OPh}(η2‐S2CNEt2)], 4 or [Pd(PPh3){η1‐C(S)OPh}(η2‐dppa)][Cl], 5 . Complex 1 is determined by single‐crystal X‐ray diffraction and crystallized in the monoclinic space group P21 with Z = 4. The cell dimensions of 1 are as follows: a = 9.5613(1) Å, b = 33.6732(3) Å, c = 12.2979(1) Å.  相似文献   

8.
The like and unlike isomers of phosphoramidite (P*) ligands are found to react differently with iridium(I), which is a key to explaining the apparently inconsistent results obtained by us and other research groups in a variety of catalytic reactions. Thus, the unlike diastereoisomer (aR,S,S)‐[IrCl(cod)( 1 a )] ( 2 a ; cod=1,5‐cyclooctadiene, 1 a =(aR,S,S)‐(1,1′‐binaphthalene)‐2,2′‐diyl bis(1‐phenylethyl)phosphoramidite) forms, upon chloride abstraction, the monosubstituted complex (aR,S,S)‐[Ir(cod)(1,2‐η‐ 1 a ,κP)]+ ( 3 a ), which contains a chelating P* ligand that features an η2 interaction between a dangling phenyl group and iridium. Under analogous conditions, the like analogue (aR,R,R)‐ 1 a′ gives the disubstituted species (aR,R,R)‐[Ir(cod)( 1 a′ ,κP)2]+ ( 4 a′ ) with monodentate P* ligands. The structure of 3 a was assessed by a combination of X‐ray and NMR spectroscopic studies, which indicate that it is the configuration of the binaphthol moiety (and not that of the dangling benzyl N groups) that determines the configuration of the complex. The effect of the relative configuration of the P* ligand on its iridium(I) coordination chemistry is discussed in the context of our preliminary catalytic results and of apparently random results obtained by other groups in the iridium(I)‐catalyzed asymmetric allylic alkylation of allylic acetates and in rhodium(I)‐catalyzed asymmetric cycloaddition reactions. Further studies with the unlike ligand (aS,R,R)‐(1,1′‐binaphthalene)‐2,2′‐diyl bis{[1‐(1‐naphthalene‐1‐yl)ethyl]phosphoramidite} ( 1 b ) showed a yet different coordination mode, that is, the η4‐arene–metal interaction in (aS,R,R)‐[Ir(cod)(1,2,3,4‐η‐ 1 b ,κP)]+ ( 3 b ).  相似文献   

9.
The reaction of the N‐thiophosphorylated thiourea (HOCH2)(Me)2CNHC(S)NHP(S)(OiPr)2 (HL), deprotonated by the thiophosphorylamide group, with NiCl2 leads to green needles of the pseudotetrahedral complex [Ni(L‐1,5‐S,S′)2] ? 0.5 (n‐C6H14) or pale green blocks of the trans square‐planar complex trans‐[Ni(L‐1,5‐S,S′)2]. The former complex is stabilized by homopolar dihydrogen C?H???H?C interactions formed by n‐hexane solvent molecules with the [Ni(L‐1,5‐S,S′)2] unit. Furthermore, the dispersion‐dominated C?H??? H?C interactions are, together with other noncovalent interactions (C?H???N, C?H???Ni, C?H???S), responsible for pseudotetrahedral coordination around the NiII center in [Ni(L ‐1,5‐S,S′)2] ? 0.5 (n‐C6H14).  相似文献   

10.
Biological [Fe‐S] clusters are increasingly recognized to undergo proton‐coupled electron transfer (PCET), but the site of protonation, mechanism, and role for PCET remains largely unknown. Here we explore this reactivity with synthetic model clusters. Protonation of the arylthiolate‐ligated [4Fe‐4S] cluster [Fe4S4(SAr)4]2? ( 1 , SAr=S‐2,4‐6‐(iPr)3C6H2) leads to thiol dissociation, reversibly forming [Fe4S4(SAr)3L]1? ( 2 ) and ArSH (L=solvent, and/or conjugate base). Solutions of 2 +ArSH react with the nitroxyl radical TEMPO to give [Fe4S4(SAr)4]1? ( 1ox ) and TEMPOH. This reaction involves PCET coupled to thiolate association and may proceed via the unobserved protonated cluster [Fe4S4(SAr)3(HSAr)]1? ( 1‐H ). Similar reactions with this and related clusters proceed comparably. An understanding of the PCET thermochemistry of this cluster system has been developed, encompassing three different redox levels and two protonation states.  相似文献   

11.
The Morita? Baylis? Hillman (MBH) reactions of (4S,5R,7R,8R)‐ and (4R,5R,7R,8R)‐4‐hydroxy‐7,8‐dimethoxy‐7,8‐dimethyl‐6,9‐dioxaspiro[4.5]dec‐2‐en‐1‐ones ( 2 and 3 , resp.) with aldehydes using various catalysts were studied. A combination of Bu3P/phenol in THF was found being optimum conditions giving the corresponding MBH adducts with high diastereoisomeric ratios. After separation, each stereomerically pure isomer of the MBH adducts was subjected to hydrolysis employing 1% aq. CF3COOH (TFA) in a water bath of an ultrasonic cleaner to afford the corresponding polyhydroxylated cyclopentenones in good yields.  相似文献   

12.
Treatment of (NH4)[Au(D‐Hpen‐S)2](D‐H2pen = D‐penicillamine) with CoCl2·6H2O in an acetate buffer solution, followed by air oxidation, gave neutral AuICoIII and anionic AuI3CoIII2 polynuclear complexes, [Au3Co3(D‐pen‐N,O,S)6]([ 1 ]) and [Au3Co2(D‐pen‐N,S)6]3? ([ 2 ]3?), which were separated by anion‐exchange column chromatography. Complexes [ 1 ] and [ 2 ]3? each formed a single isomer, and their structures were determined by single‐crystal X‐ray crystallography. In [ 1 ], each of three [Au(D‐pen‐S)2]3?metalloligands coordinates to two CoIII ions in a bis‐tridentate‐N,O,S mode to form a cyclic AuI3CoIII3 hexanuclear structure, in which three [Co(D‐pen‐N,O,S)2]? octahedral units and six bridging S atoms adopt trans(O) geometrical and R chiral configurations, respectively. In [ 2 ]3?, each of three [Au(D‐pen‐S)2]3? metalloligands coordinates to two CoIII ions in a bis‐bidentate‐N,S mode to form a AuI3CoIII2 pentanuclear structure, in which two [Co(D‐pen‐N,S)3]3? units and six bridging S atoms adopt ∧ and R chiral configurations, respectively.  相似文献   

13.
Bipyridinophane–fluorene conjugated copolymers have been synthesized via Suzuki and Heck coupling reactions from 5,8‐dibromo‐2,11‐dithia[3]paracyclo[3](4,4′)‐2,2′‐bipyridinophane and suitable fluorene precursors. Poly[2,7‐(9,9‐dihexylfluorene)‐coalt‐5,8‐(2,11‐dithia[3]paracyclo[3](4,4′)‐2,2′‐bipyridinophane)] ( P7 ) exhibits large absorption and emission redshifts of 20 and 34 nm, respectively, with respect to its planar reference polymer Poly[2,7‐(9,9‐dihexylfluorene)‐co‐alt‐1,4‐(2,5‐dimethylbenzene)] ( P11 ), which bears the same polymer backbone as P7 . These spectral shifts originate from intramolecular aromatic C? H/π interactions, which are evidenced by ultraviolet–visible and 1H NMR spectra as well as X‐ray single‐crystal structural analysis. However, the effect of the intramolecular aromatic C? H/π interactions on the spectral shift in poly[9,9‐dihexylfluorene‐2,7‐yleneethynylene‐coalt‐5,8‐(2,11‐dithia[3]paracyclo[3](4,4′)‐2,2′‐bipyridinophane)] ( P10 ) is much weaker. Most interestingly, the quenching behaviors of these two conjugated polymers are largely dependent on the polymer backbone. For example, the fluorescence of P7 is efficiently quenched by Cu2+, Co2+, Ni2+, Zn2+, Mn2+, and Ag+ ions. In contrast, only Cu2+, Co2+, and Ni2+ ions can partially quench the fluorescence of P10 , but much less efficiently than the fluorescence of P7 . The static Stern–Volmer quenching constants of Cu2+, Co2+, and Ni2+ ions toward P7 are of the order of 106 M?1, being 1300, 2500, and 37,300 times larger than those of P10 , respectively. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4154–4164, 2006  相似文献   

14.
(?)‐(1S,2R)‐Norbornene‐2‐carboxylic acid alkyl esters (alkyl = Me, Bz, L ‐menthyl, or D ‐menthyl) were successfully prepared by the Diels–Alder reaction of cyclopentadiene with (R)‐(?)‐pantolactone‐O‐yl acrylate followed by epimerization and column chromatography. The enantiomeric excess was 99.9%. These monomers were polymerized by Pd(II)‐based catalysts, and high yields of the polymers were obtained. The methyl ester gave an optically active polymer of high optical rotation (monomer [α]D = ?24.7, polymer [α]D = ?98.5). This high rotation value of the polymer was attributed to the isotactic chain regulation of the polymer. This high rotation was not observed with methyl esters prepared by the transesterification of menthyl esters. The stereoregular polymer exhibited notable resonance peaks at 39 ppm in 13C NMR spectra. No crystallinity was observed. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1263–1270, 2006  相似文献   

15.
Reported here are the single‐crystal X‐ray structure analyses of bis‐μ‐methanol‐κ4O:O‐bis{[hydrotris(3‐phenyl‐2‐sulfanylidene‐2,3‐dihydro‐1H‐1,3‐imidazol‐1‐yl)borato‐κ3H,S,S′](methanol‐κO)sodium(I)}, [Na2(C27H22BN6S3)2(CH4O)4] (NaTmPh), bis‐μ‐methanol‐κ4O:O‐bis{[hydrotris(3‐isopropyl‐2‐sulfanylidene‐2,3‐dihydro‐1H‐1,3‐imidazol‐1‐yl)borato‐κ3H,S,S′](methanol‐κO)sodium(I)}–diethyl ether–methanol (1/0.3333/0.0833), [Na2(C18H28BN6S3)2(CH4O)4]·0.3333C4H10O·0.0833CH3OH (NaTmiPr), and a novel anhydrous form of sodium hydrotris(methylthioimidazolyl)borate, poly[[μ‐hydrotris(3‐methyl‐2‐sulfanylidene‐2,3‐dihydro‐1H‐1,3‐imidazol‐1‐yl)borato]sodium(I)], [Na(C12H16BN6S3)] ([NaTmMe]n). NaTmiPr and NaTmPh have similar dimeric molecular structures with κ3H,S,S′‐bonding, but they differ in that NaTmPh is crystallographically centrosymmetric (Z′ = 0.5) while NaTmiPr contains one crystallographically centrosymmetric dimer and one dimer positioned on a general position (Z′ = 1.5). [NaTmMe]n is a one‐dimensional coordination polymer that extends along the a direction and which contains a hitherto unseen side‐on η2‐C=S‐to‐Na bond type. An overview of the structural preferences of alkali metal soft scorpionate complexes is presented. This analysis suggests that these thione‐based ligands will continue to be a rich source of interesting alkali metal motifs worthy of isolation and characterization.  相似文献   

16.
Achiral P‐donor pincer‐aryl ruthenium complexes ([RuCl(PCP)(PPh3)]) 4c , d were synthesized via transcyclometalation reactions by mixing equivalent amounts of [1,3‐phenylenebis(methylene)]bis[diisopropylphosphine] ( 2c ) or [1,3‐phenylenebis(methylene)]bis[diphenylphosphine] ( 2d ) and the N‐donor pincer‐aryl complex [RuCl{2,6‐(Me2NCH2)2C6H3}(PPh3)], ( 3 ; Scheme 2). The same synthetic procedure was successfully applied for the preparation of novel chiral P‐donor pincer‐aryl ruthenium complexes [RuCl(P*CP*)(PPh3)] 4a , b by reacting P‐stereogenic pincer‐arenes (S,S)‐[1,3‐phenylenebis(methylene)]bis[(alkyl)(phenyl)phosphines] 2a , b (alkyl=iPr or tBu, P*CHP*) and the complex [RuCl{2,6‐(Me2NCH2)2C6H3}(PPh3)], ( 3 ; Scheme 3). The crystal structures of achiral [RuCl(equation/tex2gif-sup-3.gifPCP)(PPh3)] 4c and of chiral (S,S)‐[RuCl(equation/tex2gif-sup-6.gifPCP)(PPh3)] 4a were determined by X‐ray diffraction (Fig. 3). Achiral [RuCl(PCP)(PPh3)] complexes and chiral [RuCl(P*CP*)(PPh3)] complexes were tested as catalyst in the H‐transfer reduction of acetophenone with propan‐2‐ol. With the chiral complexes, a modest enantioselectivity was obtained.  相似文献   

17.
Two Tetrachlorothiotantalates: [Na‐15‐crown‐5][TaSCl4 · dioxane] and [Na‐15‐crown‐5]2[(TaSCl4)2dioxane] · S8 During the reaction of Na2S4, TaCl5 and 15‐crown‐5 in dichloromethane the crown ether partly suffers degradation to 1,4‐dioxane. Aside from sulfur, [Na‐15‐crown‐5][TaSCl4 · dioxane] was the first product obtained. It crystallizes in the monoclinic space group P21/n with a = 1066.1, b = 1781.3, c = 1258.3 pm, β = 97.14°, Z = 4. In the [TaSCl4 · dioxane] ion a dioxane molecule is loosely bonded to a square‐pyramidal TaSCl4 unit; two chlorine atoms are in contact with an Na+ ion. Upon standing with the mother liquor [Na‐15‐crown‐5]2[(TaSCl4)2dioxane] · S8 was formed. It crystallizes in the monoclinic space group C2/m; a = 1768.5, b = 1084.0, c = 1517.3 pm, β = 118.46°, Z = 4. In this case a dioxane molecule is coordinated with two TaSCl4 units. The [(TaSCl4)2 · dioxane]2– ions and S8 molecules alternate in the stacking direction b.  相似文献   

18.
Whereas the cluster [Mo3S4(acac)3(py)3]+ ([ 1 ]+, acac=acetylacetonate, py=pyridine) reacts with a variety of alkynes, the cluster [W3S4(acac)3(py)3]+ ([ 2 ]+) remains unaffected under the same conditions. The reactions of cluster [ 1 ]+ show polyphasic kinetics, and in all cases clusters bearing a bridging dithiolene moiety are formed in the first step through the concerted [3+2] cycloaddition between the C?C atoms of the alkyne and a Mo(μ‐S)2 moiety of the cluster. A computational study has been conducted to analyze the effect of the metal on these concerted [3+2] cycloaddition reactions. The calculations suggest that the reactions of cluster [ 2 ]+ with alkynes feature ΔG values only slightly larger than its molybdenum analogue, however, the differences in the reaction free energies between both metal clusters and the same alkyne reach up to approximately 10 kcal mol?1, therefore indicating that the differences in the reactivity are essentially thermodynamic. The activation strain model (ASM) has been used to get more insights into the critical effect of the metal center in these cycloadditions, and the results reveal that the change in reactivity is entirely explained on the basis of the differences in the interaction energies Eint between the cluster and the alkyne. Further decomposition of the Eint values through the localized molecular orbital‐energy decomposition analysis (LMO‐EDA) indicates that substitution of the Mo atoms in cluster [ 1 ]+ by W induces changes in the electronic structure of the cluster that result in weaker intra‐ and inter‐fragment orbital interactions.  相似文献   

19.
Mono‐ and bis‐decylated lumazines have been synthesized and characterized. Namely, mono‐decyl chain [1‐decylpteridine‐2,4(1,3H)‐dione] 6a and bis‐decyl chain [1,3‐didecylpteridine‐2,4(1,3H)‐dione] 7a conjugates were synthesized by nucleophilic substitution (SN2) reactions of lumazine with 1‐iododecane in N,N‐dimethylformamide (DMF) solvent. Decyl chain coupling occurred at the N1 site and then the N3 site in a sequential manner, without DMF condensation. Molecular orbital (MO) calculations show a p‐orbital at N1 but not N3, which along with a nucleophilicity parameter (N) analysis predict alkylation at N1 in lumazine. Only after the alkylation at N1 in 6a , does a p‐orbital on N3 emerge thereby reacting with a second equivalent of 1‐iododecane to reach the dialkylated product 7a . Data from NMR (1H, 13C, HSQC, HMBC), HPLC, TLC, UV‐vis, fluorescence and density functional theory (DFT) provide evidence for the existence of mono‐decyl chain 6a and bis‐decyl chain 7a . These results differ to pterin O‐alkylations (kinetic control), where N‐alkylation of lumazine is preferred and then to dialkylation (thermodynamic control), with an avoidance of DMF solvent condensation. These findings add to the list of alkylation strategies for increasing sensitizer lipophilicity for use in photodynamic therapy.  相似文献   

20.
The push‐pull activated methyl (3Z)‐4,6‐O‐benzylidene‐3‐[(methylthio)methylene]‐3‐deoxy‐α‐D‐erythro‐hexopyranosid‐2‐ulose (1) reacted with dialkyl malonate in the presence of potassium carbonate to give the alkyl (2R,4aR,6S,10bS)‐4a,6,8,10b‐tetrahydro‐6‐methoxy‐8‐oxo‐2‐phenyl‐4H‐pyrano[3′,2′:4,5]pyrano[3,2‐d][1,3]dioxine‐9‐carboxylates 2 and 3. Treatment of 1 with 3‐oxo‐N‐phenyl‐butyramide, N‐(4‐methoxy‐phenyl)‐3‐oxo‐butyramide, and 3‐oxo‐No‐tolyl‐butyramide, respectively, in the presence of potassium carbonate and 18‐crown‐6 yielded the (2R,4aR,6S,10bS)‐9‐acetyl‐7‐aryl‐4,4a,7,10b‐tetrahydro‐6‐methoxy‐2‐phenyl[1,3]dioxino‐[4′,5′:5,6]pyrano[3,4‐b]pyridin‐8(6H)‐ones 46. (2R,4aR,6S,10bS)‐4,4a,8,10b‐Tetrahydro‐6‐methoxy‐8‐oxo‐2‐phenyl‐4H‐pyrano[3′,2′:4,5]pyrano[3,2‐d][1,3]dioxine‐9‐carboxamide (7) was prepared by anellation reactions of 1 either with malononitrile or with cyanoacetamide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号