首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ground‐state molecular vibrations can be hybridized through strong coupling with the vacuum field of a cavity optical mode in the infrared region, leading to the formation of two new coherent vibro‐polariton states. The spontaneous Raman scattering from such hybridized light–matter states was studied, showing that the collective Rabi splitting occurs at the level of a single selected bond. Moreover, the coherent nature of the vibro‐polariton states boosts the Raman scattering cross‐section by two to three orders of magnitude, revealing a new enhancement mechanism as a result of vibrational strong coupling. This observation has fundamental consequences for the understanding of light‐molecule strong coupling and for molecular science.  相似文献   

2.
Carbon nanostructures with precisely controlled shapes are difficult materials to synthesize. A facet‐selective‐catalytic process was thus proposed to synthesize polymer‐linked carbon nanostructures with different shapes, covering straight carbon nanofiber, carbon nano Y‐junction, carbon nano‐hexapus, and carbon nano‐octopus. A thermal chemical vapor deposition process was applied to grow these multi‐branched carbon nanostructures at temperatures lower than 350 °C. Cu nanoparticles were utilized as the catalyst and acetylene as the reaction gas. The growth of those multi‐branched nanostructures was realized through the selective growth of polymer‐like sheets on certain indexed facets of Cu catalyst. The vapor–facet–solid (VFS) mechanism, a new growth mode, has been proposed to interpret such a growth in the steps of formation, diffusion, and coupling of carbon‐containing oligomers, as well as their final precipitation to form nanostructures on the selective Cu facets.  相似文献   

3.
Surface-confined self-assembly of functional molecular building blocks has recently been widely used to create low-dimensional, also covalent, superstructures with tailorable geometry and physicochemical properties. In this contribution, using the lattice Monte Carlo simulation method, we demonstrate how the structure-property relation can be established for the 2D self-assembly of a model tetrapod molecule with reduced symmetry. To that end, a rigid functional unit comprising a few interconnected segments arranged in different tetrapod shapes was used and its self-assembly on a triangular lattice representing a (111) crystal surface was simulated. The results of our calculations show strong dependence of the structure formation on the molecular symmetry, in particular on the (pro)chiral nature of the building block. The simulations predicted the formation of unusual ordered racemic networks with unique aperiodic spatial distribution of the surface enantiomers. Molecular symmetry was also found to have significant influence on the enantiopure self-assembly which resulted in the Kagome and brickwall networks and other less ordered extended superstructures with parallelogram pores. The theoretical findings of this contribution can be relevant to designing and on-surface synthesis of molecular superstructures with predefined geometries and functions. In particular, the predicted molecular architectures can stimulate experimental efforts to fabricate and explore new nanostructures, for example graphitic, having the composition and geometry proposed in our study.  相似文献   

4.
DNA origami has rapidly emerged as a powerful and programmable method to construct functional nanostructures. However, the size limitation of approximately 100 nm in classic DNA origami hampers its plasmonic applications. Herein, we report a jigsaw‐puzzle‐like assembly strategy mediated by gold nanoparticles (AuNPs) to break the size limitation of DNA origami. We demonstrated that oligonucleotide‐functionalized AuNPs function as universal joint units for the one‐pot assembly of parent DNA origami of triangular shape to form sub‐microscale super‐origami nanostructures. AuNPs anchored at predefined positions of the super‐origami exhibited strong interparticle plasmonic coupling. This AuNP‐mediated strategy offers new opportunities to drive macroscopic self‐assembly and to fabricate well‐defined nanophotonic materials and devices.  相似文献   

5.
Over the past few years, two‐dimensional (2D) nanoporous networks have attracted great interest as templates for the precise localization and confinement of guest building blocks, such as functional molecules or clusters on the solid surfaces. Herein, a series of two‐component molecular networks with a 3‐fold symmetry are constructed on graphite using a truxenone derivative and trimesic acid homologues with carboxylic‐acid‐terminated alkyl chains. The hydrogen‐bonding partner‐recognition‐induced 2D crystallization of alkyl chains makes the flexible alkyl chains act as rigid spacers in the networks to continuously tune the pore size with an accuracy of one carbon atom per step. The two‐component networks were found to accommodate and regulate the distribution and aggregation of guest molecules, such as COR and CuPc. This procedure provides a new pathway for the design and fabrication of molecular nanostructures on solid surfaces.  相似文献   

6.
The on‐surface coupling reactions of terminal alkynes catalyzed by exogenous cupric ions on chemically inert highly oriented pyrolytic graphite (HOPG) surface have been investigated by scanning tunnelling microscopy. In the presence of exogenous cupric ions, diyne‐linked nanostructures generated via homocoupling of terminal alkynes are the exclusive products, whereas no coupling reaction occurs for the terminal alkynes on the surface in the absence of the cupric ions, suggesting that exogenous cupric ions are efficient to catalyze the highly chemoselective on‐surface reaction of terminal alkynes. The HOPG surface displays a template effect to the growth and alignment of the products on the surface. As a result, 2D arrays of diyne‐linked zigzag polymers and 2D diyne‐linked porous polymers are fabricated from ditopic monomer 3,6‐diethynylcarbazole and tritopic monomer 1,3,5‐tris‐(4‐ethynylphenyl) benzene, respectively. This synthetic strategy combining the high selectivity of cupric ion catalyst as well as the template effect of on‐surface synthesis approach could be a general strategy to fabricate diyne‐linked nanostructures and nanomaterials on solid surfaces.  相似文献   

7.
Great strides have been made in enhancing solar energy conversion by utilizing plasmonic nanostructures in semiconductors. However, current generation with plasmonic nanostructures is still somewhat inefficient owing to the ultrafast decay of plasmon‐induced hot electrons. It is now shown that the ultrafast decay of hot electrons across Au nanoparticles can be significantly reduced by strong coupling with CdS quantum dots and by a Schottky junction with perovskite SrTiO3 nanoparticles. The designed plasmonic nanostructure with three distinct components enables a hot‐electron‐assisted energy cascade for electron transfer, CdS→Au→SrTiO3, as demonstrated by steady‐state and time‐resolved photoluminescence spectroscopy. Consequently, hot‐electron transfer enabled the efficient production of H2 from water as well as significant electron harvesting under irradiation with visible light of various wavelengths. These findings provide a new approach for overcoming the low efficiency that is typically associated with plasmonic nanostructures.  相似文献   

8.
It is well known that symmetry plays a key role in chemical reactivity. Here we explore its role in vibrational strong coupling (VSC) for a charge‐transfer (CT) complexation reaction. By studying the trimethylated‐benzene–I2 CT complex, we find that VSC induces large changes in the equilibrium constant KDA of the CT complex, reflecting modifications in the ΔG° value of the reaction. Furthermore, by tuning the microfluidic cavity modes to the different IR vibrations of the trimethylated benzene, ΔG° either increases or decreases depending only on the symmetry of the normal mode that is coupled. This result reveals the critical role of symmetry in VSC and, in turn, provides an explanation for why the magnitude of chemical changes induced by VSC are much greater than the Rabi splitting, that is, the energy perturbation caused by VSC. These findings further confirm that VSC is powerful and versatile tool for the molecular sciences.  相似文献   

9.
The synthesis of noble metal/semiconductor hybrid nanostructures for enhanced catalytic or superior optical properties has attracted a lot of attention in recent years. In this study, a facile and all‐solution‐processed synthetic route was employed to demonstrate an Au/ZnO platform with plasmonic‐enhanced UV/Vis catalytic properties while retaining strengthened luminescent properties. The visible‐light response of photocatalysis is supported by localized surface plasmon resonance (LSPR) excitations while the enhanced performance under UV is aided by charge separation and strong absorption. The enhancement in optical properties is mainly due to local field enhancement effect and coupling between exciton and LSPR. Luminescent characteristics are investigated and discussed in detail. Recyclability tests showed that the Au/ZnO substrate is reusable by cleaning and has a long shelf life. Our result suggests that plasmonic enhancement of photocatalytic performance is not necessarily a trade‐off for enhanced near‐band‐edge emission in Au/ZnO. This approach may give rise to a new class of versatile platforms for use in novel multifunctional and integrated devices.  相似文献   

10.
The direct coupling of complex, functional organic molecules at a surface is one of the outstanding challenges in the road map to future molecular devices. Equally demanding is to meet this challenge without recourse to additional functionalization of the molecular building blocks and via clean surface reactions that leave no surface contamination. Here, we demonstrate the directional coupling of unfunctionalized porphyrin molecules--large aromatic multifunctional building blocks--on a single crystal copper surface, which generates highly oriented one-dimensional organometallic macromolecular nanostructures (wires) in a reaction which generates gaseous hydrogen as the only byproduct. In situ scanning tunneling microscopy and temperature programmed desorption, supported by theoretical modeling, reveal that the process is driven by C-H bond scission and the incorporation of copper atoms in between the organic components to form a very stable organocopper oligomer comprising organometallic edge-to-edge porphyrin-Cu-porphyrin connections on the surface that are unprecedented in solution chemistry. The hydrogen generated during the reaction leaves the surface and, therefore, produces no surface contamination. A remarkable feature of the wires is their stability at high temperatures (up to 670 K) and their preference for 1D growth along a prescribed crystallographic direction of the surface. The on-surface formation of directional organometallic wires that link highly functional porphyrin cores via direct C-Cu-C bonds in a single-step synthesis is a new development in surface-based molecular systems and provides a versatile approach to create functional organic nanostructures at surfaces.  相似文献   

11.
We report the properties of plasmons in dense planar arrays of silver single and double nanostructures with various geometries fabricated by electron beam lithography (EBL) as a function of their size and spacing. We demonstrate a strong plasmon coupling mechanism due to near-field dipolar interactions between adjacent nanostructures, which produces a major red shift of the localized surface plasmon resonance (LSPR) in silver nanoparticles and leads to strong maximum electric field enhancements in a broad spectral range. The extinction spectra and maximum electric field enhancements are theoretically modeled by using the finite element method. Our modeling revealed that strong averaged electric field enhancements of up to 60 in visible range and up to 40 in mid-infrared result from hybridization of multipolar resonances in such dense nanostructures; these are important for applications in surface enhanced spectroscopies.  相似文献   

12.
Programmable molecular self‐assembly of siRNA molecules provides precisely controlled generation of dendrimeric siRNA nanostructures. The second‐generation dendrimers of siRNA can be effectively complexed with a low‐molecular‐weight, cationic polymer (poly(β‐amino ester), PBAE) to generate stable nanostructures about 160 nm in diameter via strong electrostatic interactions. Condensation and gene silencing efficiencies increase with the increased generation of siRNA dendrimers due to a high charge density and structural flexibility.  相似文献   

13.
The vibrational circular dichroism (VCD) spectra of (S)-(+)-2-butanol have been observed in dilute CS(2) solutions. Two strong VCD bands are assigned mainly to the OH bending modes with the aid of quantum chemical calculations. The calculated VCD spectra corresponding to these bands are shown to depend on the conformation of the OH group. To understand this feature, we have calculated the contribution of each local vibrational mode to the rotational strengths and concluded that the coupling of the group vibrations between the in-plane and out-of-plane modes about the locally assumed symmetry planes play a significant role in VCD. This finding has provided a new scope of VCD in relation to molecular vibrations.  相似文献   

14.
The structures, relative stabilities, vertical detachment energies and magnetic coupling properties of a series of manganese-based dinuclear superhalogens and their isoelectronic analogues are explored via a combined density functional theory and broken symmetry study. Both the capabilities of various exchange-correlation functionals and basis set effects are investigated. The large magnitudes of the calculated exchange coupling constants indicate clearly the apparent molecular magnetism of these new types of superhalogen. Encouragingly, the high possibility of the coexistence of both high stability and strong magnetic coupling in these new polynuclear superhalogens is also confirmed. Besides these, the larger magnitudes of the calculated coupling constants of iron-based clusters here, compared with the homodinuclear [Mn(2)Cl(5)](-) cluster, demonstrate the possibility of the existence of strong magnetic coupling in potential iron-based homo- and heterodinuclear superhalogens. The analysis of spin density distribution is also performed in order to understand the coupling mechanisms.  相似文献   

15.
Phthalocyanine (Pc) molecules are well‐known flexible structural units for 1D nanotubes and 2D nanosheets. First‐principles calculations combined with grand canonical Monte Carlo simulations are used to obtain the geometries, electronic structures, optical properties, and hydrogen‐storage capacities of nanocages consisting of six Pc molecules with six Mg or Ca atoms. The primitive Pc cage has Th symmetry with twofold degeneracy in the highest occupied molecular orbital (HOMO), and threefold degeneracy in the lowest unoccupied molecular orbital (LUMO); the corresponding HOMO–LUMO gap is found to be 0.97 eV. The MgPc and CaPc cages have Oh symmetry with a HOMO–LUMO gap of 1.24 and 1.13 eV, respectively. Optical absorption spectra suggest that the Pc‐based cages can absorb infrared light, which is different from the visible‐light absorption in Pc molecules. We further show that the excess uptake of hydrogen on MgPc and CaPc cages at 298 K and 100 bar (1 bar=0.1 MPa) is about 3.49 and 4.74 wt %, respectively. The present study provides new insight into Pc‐based nanostructures with potential applications.  相似文献   

16.
Cyclic d / l peptides (CPs) assemble spontaneously via backbone H‐bonding to form extended nanostructures. These modular materials have great potential as versatile bionanomaterials. However, the useful development of CP nanomaterials requires practical methods to direct and control their assembly. In this work, we present novel, heterogeneous, covalently linked CP tetramers that achieve local control over the CP subunit order and composition through coupling of amino acid side‐chains using copper‐activated azide–alkyne cycloaddition and disulfide bond formation. Cryo‐transmission electron microscopy revealed the formation of highly ordered, fibrous nanostructures, while NMR studies showed that these systems have strong intramolecular H‐bonding in solution. The introduction of inter‐CP tethers is expected to enable the development of complex nanomaterials with controllable chemical properties, facilitating the development of precisely functionalized or “decorated” peptide nanostructures.  相似文献   

17.
Bridging homogeneous molecular systems with heterogeneous catalysts is a promising approach for the development of new electrodes, combining the advantages of both approaches. In the context of CO2 electroreduction, molecular enhancement of planar copper electrodes has enabled promising advancement towards high Faradaic efficiencies for multicarbon products. Besides, nanostructured copper electrodes have also demonstrated enhanced performance at comparatively low overpotentials. Herein, we report a novel and convenient method for nanostructuring copper electrodes using N,N′‐ethylene‐phenanthrolinium dibromide as molecular additive. Selectivities up to 70 % for C≥2 products are observed for more than 40 h without significant change in the surface morphology. Mechanistic studies reveal several roles for the organic additive, including: the formation of cube‐like nanostructures by corrosion of the copper surface, the stabilization of these nanostructures during electrocatalysis by formation of a protective organic layer, and the promotion of C≥2 products.  相似文献   

18.
A new class of π‐conjugated, skewed H‐shaped oligomers, consisting of biphenyl, phenylene vinylene, and phenylene ethynylene units as the rigid segment, were synthesized via Sonogashira coupling and Wittig reactions. The coil segments of these molecules were composed of poly(ethylene oxide) (PEO) or PEO with lateral methyl groups between the rod and coil segment, respectively. The experimental results revealed that the lateral methyl groups attached to the surface of the rod and coil segments dramatically influenced the self‐assembling behavior of the molecules in the crystalline phase. H‐shaped rod–coil molecules containing a lateral methyl group at the surface of the rod and PEO coil segments self‐assemble into a two‐dimensional columnar or a three‐dimensional body‐centered tetragonal nanostructures in the crystalline phase, whereas molecules lacking a lateral methyl group based on the PEO coil chain self‐organize into lamellar or hexagonal perforated lamellar nanostructures. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 85–92  相似文献   

19.
《化学:亚洲杂志》2017,12(9):1020-1024
Amphiphilic molecules have received wide attention as they possess both hydrophobic and hydrophilic properties, and can form diverse nanostructures in selective solvents. Herein, we report an asymmetric amphiphilic zwitterionic perylene bisimide ( AZP ) with an octyl chain and a zwitterionic group on the opposite imide positions of perylene tetracarboxylic dianhydride. The controllable nanostructures of AZP with tunable hydrophilic/hydrophobic surface have been investigated through solvent‐dependent amphiphilic self‐assembly as confirmed by SEM, TEM, and contact angle measurements. The planar perylene core of AZP contributes to strong π–π stacking, while the amphiphilic balance of asymmetric AZP adjusts the self‐assembly property. Additionally, due to intermolecular π–π stacking and solvent–solute interactions, AZP could self‐assemble into hydrophilic microtubes in a polar solvent (acetone) and hydrophobic nanofibers in an apolar solvent (hexane). This facile method provides a new pathway for controlling the surface properties based on an asymmetric amphiphilic zwitterionic perylene bisimide.  相似文献   

20.
Bifunctional Au@Ni core–satellite nanostructures synthesized by a one‐step assembly method were employed for in situ surface‐enhanced Raman spectroscopic (SERS) monitoring of Ni‐catalyzed C?C bond‐forming reactions. Surprisingly, the reaction that was thought to be an Ullmann‐type self‐coupling reaction, was found to be a cross‐coupling reaction proceeding by photoinduced aromatic C?H bond arylation. In situ SERS monitoring enabled the discovery, and a series of biphenyl compounds were synthesized photocatalytically, and at room temperature, using cheap Ni nanoparticle catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号