首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The chemical production of graphene as well as its controlled wet chemical modification is a challenge for synthetic chemists. Furthermore, the characterization of reaction products requires sophisticated analytical methods. In this Review we first describe the structure of graphene and graphene oxide and then outline the most important synthetic methods that are used for the production of these carbon‐based nanomaterials. We summarize the state‐of‐the‐art for their chemical functionalization by noncovalent and covalent approaches. We put special emphasis on the differentiation of the terms graphite, graphene, graphite oxide, and graphene oxide. An improved fundamental knowledge of the structure and the chemical properties of graphene and graphene oxide is an important prerequisite for the development of practical applications.  相似文献   

3.
We study the effect of oxidative impurities on the properties of graphene oxide and on the graphene oxide Langmuir–Blodgett films (LB). The starting material was grupo Antolín nanofibers (GANF) and the oxidation process was a modified Hummers method to obtain highly oxidized graphene oxide. The purification procedure reported in this work eliminated oxidative impurities decreasing the thickness of the nanoplatelets. The purified material thus obtained presents an oxidation degree similar to that achieved by chemical reduction of the graphite oxide. The purified and non‐purified graphene oxides were deposited onto silicon by means of a Langmuir–Blodgett (LB) methodology. The morphology of the LB films was analyzed by field emission scanning microscopy (FE‐SEM) and micro‐Raman spectroscopy. Our results show that the LB films built by transferring Langmuir monolayers at the liquid‐expanded state of the purified material are constituted by close‐packed and non‐overlapped nanoplatelets. The isotherms of the Langmuir monolayer precursor of the LB films were interpreted according to the Volmer’s model.  相似文献   

4.
Graphene oxide (GO) nanosheets are readily reduced by aniline above room temperature in an aqueous acid medium, with the aniline simultaneously undergoing oxidative polymerization to produce the reduced graphene oxide‐polyaniline nanofiber (RGO‐PANi) composites. The resulting RGO‐PANi composites and RGO (after dissolution of PANi) were characterized by XPS, XRD analysis, TGA, UV–visible absorption spectroscopy, and TEM. It was also found that the RGO‐PANi composites exhibit good specific capacitance during galvanostatic charging–discharging when used as capacitor electrodes.

  相似文献   


5.
Graphene and graphene oxides are materials of significant interest in electrochemical devices such as supercapacitors, batteries, fuel cells, and sensors. Graphene oxides and reduced graphenes are typically prepared by oxidizing graphite in strong mineral acid mixtures with chlorate (Staudenmaier, Hofmann) or permanganate (Hummers, Tour) oxidants. Herein, we reveal that graphene oxides pose inherent electrochemistry, that is, they can be oxidized or reduced at relatively mild potentials (within the range ±1 V) that are lower than typical battery potentials. This inherent electrochemistry of graphene differs dramatically from that of the used oxidants. Graphene oxides prepared using chlorate exhibit chemically irreversible reductions, whereas graphene oxides prepared through permanganate‐based methods exhibit very unusual inherent chemically reversible electrochemistry of oxygen‐containing groups. Insight into the electrochemical behaviour was obtained through cyclic voltammetry, chronoamperometry, and X‐ray photoelectron spectroscopy experiments. Our findings are of extreme importance for the electrochemistry community as they reveal that electrode materials undergo cyclic changes in charge/discharge cycles, which has strong implications for energy‐storage and sensing devices.  相似文献   

6.
孔祥恺  陈乾旺 《化学学报》2013,71(3):381-386
基于独特的结构和性质, 石墨烯在很多领域都表现出了巨大的潜力. 作为制备石墨烯的主要母体材料, 石墨烯氧化物在室温条件下被观测到具有弱的铁电性. 石墨烯氧化物的表面和边界上会存在大量的羟基, 这些羟基有序重复排列而构成了一维的氢键链, 这些有序氢键链可能是石墨烯氧化物呈现铁电性能的主要原因.  相似文献   

7.
Graphene has attracted increasing attention in multidisciplinary studies because of its unique physical and chemical properties. Herein, the adsorption of polycyclic aromatic hydrocarbons (PAHs), such as naphthalene (NAP), anthracene (ANT), and pyrene (PYR), on reduced graphene oxides (rGOs) and graphene oxides (GOs) as a function of pH, humic acid (HA), and temperature were elucidated by means of a batch technique. For comparison, nonpolar and nonporous graphite were also employed in this study. The increasing of pH from 2 to 11 did not influence the adsorption of PAHs on rGOs, whereas the suppressed adsorption of NAP on rGOs was observed both in the presence of HA and under high‐temperature conditions. Adsorption isotherms of PAHs on rGOs were in accordance with the Polanyi–Dubinin–Ashtahhov (PDA) model, providing evidence that pore filling and flat surface adsorption were involved. The saturated adsorbed capacities (in mmol g?1) of rGOs for PAHs calculated from the PDA model significantly decreased in the order of NAP>PYR>ANT, which was comparable to the results of theoretical calculations. The pore‐filling mechanism dominates the adsorption of NAP on rGOs, but the adsorption mechanisms of ANT and PYR on rGOs are flat surface adsorption.  相似文献   

8.
Covalently functionalized graphene materials with well‐defined stoichiometric composition are of a very high importance in the research of 2D carbon material family due to their well‐defined properties. Unfortunately, most of the contemporary graphene‐functionalized materials do not have this kind of defined composition and, usually, the amount of heteroatoms bonded to graphene framework is in the range of 1–10 at. %. Herein, we show that by a well‐established hydroboration reaction chain, which introduces ?BH2 groups into the graphene oxide structure, followed by H2O2 or CF3COOH treatment as source of ?OH or ?H, we can obtain highly hydroxylated compounds of precisely defined composition with a general formula (C1O0.78H0.75)n, which we named graphol and highly hydroxylated graphane (C1(OH)0.51H0.14)n, respectively. These highly functionalized materials with an accurately defined composition are highly important for the field of graphene derivatives. The enhanced electrochemical performance towards important biomarkers as well as hydrogen evolution reaction is demonstrated.  相似文献   

9.
Potential biomedicinal applications of graphene oxide (GO), for example, as a carrier of biomolecules or a reagent for photothermal therapy and biosensing, are limited by its cytotoxicity and mutagenicity. It is believed that these properties are at least partially caused by GO‐induced oxidative stress in cells. However, it is not known which chemical fragments of GO are responsible for this unfavorable effect. We generated four GOs containing variable redox‐active groups on the surface, including Mn2+, C‐centered radicals, and endoperoxides (EPs). A comparison of the abilities of these materials to generate reactive oxygen species in human cervical cancer cells revealed that EPs play a crucial role in GO‐induced oxidative stress. These data could be applied to the rational design of biocompatible nontoxic GOs for biomedical applications.  相似文献   

10.
Development of high‐strength hydrogels has recently attracted ever‐increasing attention. In this work, a new design strategy has been proposed to prepare graphene oxide (GO)/polyacrylamide (PAM)/aluminum ion (Al3+)‐cross‐linked carboxymethyl hemicellulose (Al‐CMH) nanocomposite hydrogels with very tough and elastic properties. GO/PAM/Al‐CMH hydrogels were synthesized by introducing graphene oxide (GO) into PAM/CMH hydrogel, followed by ionic cross‐linking of Al3+. The nanocomposite hydrogels were characterized by means of FTIR, X‐ray diffraction (XRD), and scanning electron microscopy/energy‐dispersive X‐ray analysis (SEM‐EDX) along with their swelling and mechanical properties. The maximum compressive strength and the Young's modulus of GO3.5/PAM/Al‐CMH0.45 hydrogel achieved values of up to 1.12 and 13.27 MPa, increased by approximately 6488 and 18330 % relative to the PAM hydrogel (0.017 and 0.072 MPa). The as‐prepared GO/PAM/Al‐CMH nanocomposite hydrogels possess high strength and great elasticity giving them potential in bioengineering and drug‐delivery system applications.  相似文献   

11.
The voltammetric study of thioguanine (TG) was comparatively investigated on bare, graphene oxide and reduced graphene oxide modified carbon paste electrodes using cyclic (CV) and square wave stripping (SWSV) voltammetric techniques. Depending on the working electrode and pH of supporting electrolyte, characteristic electrochemical behaviour of thioguanine was established and the mechanism of TG oxidation was suggested. Based on the obtained results, the new voltammetric method for TG determination in buffer solutions and pharmaceutical formulation was developed. Atomic force microscopy was used to characterize electrodes surfaces.  相似文献   

12.
13.
We report synthesis and fabrication of highly thionated reduced graphene oxide and its Langmuir-Blodgett (LB) film without an LB trough. As the synthesized product, mercapto reduced graphene oxide (mRGO) contains high thiol content estimated from XPS, corresponding to a surface coverage of 1.3 SH/nm2. The mRGO LB film shows two electronic transport properties, following Efros-Shklovskii variable-range hopping (VRH) and Mott VRH at low and high temperature, respectively. Optical and band gap of the LB film was estimated from Tauc plot and semi-logarithmic-scale plot of sheet resistance versus temperature to be 0.6 and 0.1 eV, respectively. Additionally, the sheet resistance of the mRGO LB film depends on the quantity of the thiol functional group with the same transmittance at 550 nm (500 kΩ for mRGO, 1.3 MΩ for tRGO with 92% transmittance).  相似文献   

14.
15.
16.
石墨烯及氧化石墨烯由于其独有的性质在分离膜领域引起广泛关注。本文综合分析了石墨烯及氧化石墨烯在分离膜改性方面的几种典型应用,即共混膜、多孔石墨烯膜和层状排列氧化石墨烯膜,并结合其制备方法、效能和作用机理进行阐述。结果表明,相转化法制备的共混膜可以提高膜通量和截留率、增加膜的亲水性并有效抑制膜污染,但是其并不能充分发挥氧化石墨烯独有的结构和性能优势,具有一定的局限性;层薄和机械性能强的完美结合使石墨烯可以通过打孔形成分离性能较好的多孔石墨烯膜,但是制备大片石墨烯的难度和不成熟的打孔技术限制了其进一步发展;而层状排列的氧化石墨烯膜可充分发挥氧化石墨烯材料的特性,以层间间距作为主要运输通道有利于充分发挥氧化石墨烯高输运速率的优点和高选择性的特性,为开创下一代高通量、高选择性、强抗污染性的高性能分离膜提供了重要思路。  相似文献   

17.
Graphene, the thinnest two‐dimensional material in nature, has abundant distinctive properties, such as ultrahigh carrier mobility, superior thermal conductivity, very high surface‐to‐volume ratio, anomalous quantum Hall effect, and so on. Laterally confined, thin, and long strips of graphene, namely, graphene nanoribbons (GNRs), can open the bandgap in the semimetal and give it the potential to replace silicon in future electronics. Great efforts are devoted to achieving high‐quality GNRs with narrow widths and smooth edges. This minireview reports the latest progress in experimental and theoretical studies on GNR synthesis. Different methods of GNR synthesis—unzipping of carbon nanotubes (CNTs), cutting of graphene, and the direct synthesis of GNRs—are discussed, and their advantages and disadvantages are compared in detail. Current challenges and the prospects in this rapidly developing field are also addressed.  相似文献   

18.
Every few years, a new material with unique properties emerges and fascinates the scientific community, typical recent examples being high‐temperature superconductors and carbon nanotubes. Graphene is the latest sensation with unusual properties, such as half‐integer quantum Hall effect and ballistic electron transport. This two‐dimensional material which is the parent of all graphitic carbon forms is strictly expected to comprise a single layer, but there is considerable interest in investigating two‐layer and few‐layer graphenes as well. Synthesis and characterization of graphenes pose challenges, but there has been considerable progress in the last year or so. Herein, we present the status of graphene research which includes aspects related to synthesis, characterization, structure, and properties.  相似文献   

19.
In this work, graphene oxide (GO)‐loaded agarose hydrogel was transferred into oil such as hexadecane via stepwise solvent exchange with no chemical modification of the GO hydrophilic surface and the agarose network. After transfer, the GOs, loaded in the agarose network, could effectively and efficiently adsorb lipophilic dyes in oil via hydrogen bonding between the polar groups of the GOs and the dyes. The maximum adsorption capacity was 355.9 mg g?1 for Nile red for instance, which is substantially larger than that of pristine agarose hydrogel and hydrophilic GO powder. The dye concentration for effective adsorption can be as low as 0.5 ppm. Thus, the present work demonstrates the promising potential of using hydrophilic adsorbents for efficient removal of polar impurities from oil.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号