首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We propose a new approach to high‐intensity relativistic laser‐driven electron acceleration in a plasma. Here, we demonstrate that a plasma wave generated by a stimulated forward‐scattering of an incident laser pulse can be in the longest acceleration phase with injected relativistic beam electrons. This is why the plasma wave has the maximum amplification coefficient which is determined by the acceleration time and the breakdown (overturn) electric field in which the acceleration of the injected beam electrons occurs. We must note that for the longest acceleration phase the relativity of the injected beam electrons plays a crucial role in our scheme. We estimate qualitatively the acceleration parameters of relativistic electrons in the field of a plasma wave generated at the stimulated forward‐scattering of a high‐intensity laser pulse in a plasma. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
为了克服激光加速中强流离子束空间电荷效应对粒子输运的影响,提出一种利用两块不同密度的固体靶先后和一束强度约为1022 W/cm2、脉冲长度为5T(T为激光周期)的超强脉冲激光相互作用的方案,实现了中性等离子体块的加速。通过一维PIC数值模拟研究发现,在合适的参数下,加速后的电子与质子几乎以相同的速度共同飞行长达60(为激光波长)的距离,其中质子与电子的能量分别为GeV和100 MeV量级。  相似文献   

3.
We present analytical studies of electron acceleration in the low-density preplasma of a thin solid target by an intense femtosecond laser pulse. Electrons in the preplasma are trapped and accelerated by the ponderomotive force as well as the wake field. Two-dimensional particle-in-cell simulations show that when the laser pulse is stopped by the target, electrons trapped in the laser pules can be extracted and move forward inertially. The energetic electron bunch in the bubble is unaffected by the reflected pulse and passes through the target with small energy spread and emittance. There is an optimal preplasma density for the generation of the monoenergetic electron bunch if a laser pulse is given. The maximum electron energy is inverse proportion to the preplasma density.  相似文献   

4.
We present analytical studies of electron acceleration in the low-density preplasma of a thin solid target by an intense femtosecond laser pulse. Electrons in the preplasma are trapped and accelerated by the ponderomotive force as well as the wake field. Two-dimensional particle-in-cell simulations show that when the laser pulse is stopped by the target, electrons trapped in the laser pules can be extracted and move forward inertially. The energeticelectron bunch in the bubble is unaffected by the reflected pulse and passes through the target with small energy spread and emittance. There is an optimal preplasma density for the generation of the monoenergetic electron bunch if a laser pulse is given. The maximum electron energy is inverse proportion to the preplasma density.  相似文献   

5.
Advanced targets based on graphene oxide and gold thin film were irradiated at high laser intensity (1018–1019 W/cm2) with 50‐fs laser pulses and high contrast (108) to investigate ion acceleration in the target‐normal‐sheath‐acceleration regime. Time‐of‐flight technique was employed with SiC semiconductor detectors and ion collectors in order to measure the ion kinetic energy and to control the properties of the generated plasma. It was found that, at the optimized laser focus position with respect to the target, maximum proton acceleration up to about 3 MeV energy and low angular divergence could be generated. The high proton energy is explained as due to the high electrical and thermal conductivity of the reduced graphene oxide structure. Dependence of the maximum proton energy on the target focal position and thickness is presented and discussed.  相似文献   

6.
The combined effect of relativistic and ponderomotive nonlinearities on the self‐focusing of an intense cosh‐Gaussian laser beam (CGLB) in magnetized plasma have been investigated. Higher‐order paraxial‐ray approximation has been used to set up the self‐focusing equations, where higher‐order terms in the expansion of the dielectric function and the eikonal are taken into account. The effects of various lasers and plasma parameters viz. laser intensity (a0), decentred parameter (b), and magnetic field (ωc) on the self‐focusing of CGLB have been explored. The results are compared with the Gaussian profile of laser beams and relativistic nonlinearity. Self‐focusing can be enhanced by optimizing and selecting the appropriate laser‐plasma parameters. It is observed that the focusing of CGLB is fast in a nonparaxial region in comparison with that of a Gaussian laser beam and in a paraxial region in magnetized plasma. In addition, strong self‐focusing of CGLB is observed at higher values of a0, b, and ωc. Numerical results show that CGLB can produce ultrahigh laser irradiance over distances much greater than the Rayleigh length, which can be used for various applications.  相似文献   

7.
三维面向对象的并行粒子模拟程序PLASIM3D   总被引:6,自引:1,他引:5  
设计了基于区域分解的三维粒子模拟的并行算法,基于消息传递环境(MPI)编制了三维面向对象的并行粒子模拟程序PLASIM3D(PlasmaSimulator分别取前3个字母,3D表示三维).对激光与低密度等离子体薄靶相互作用问题作了粒子模拟计算,验证了该并行程序.最后在高性能并行机上测试并分析了并行性能,获得了接近线性的加速比.  相似文献   

8.
In this paper, a two dimensional Particle In Cell‐Monte Carlo Collision simulation scheme is used to examine the THz generation via the interaction of high intensity ultra‐short laser pulses with an underdense molecular hydrogen plasma slab. The influences of plasma density, laser pulse duration and its intensity on the induced plasma current density and the subsequent effects on the generated THz signal characteristics are studied. It is observed that the induced current density in the plasma medium and THz spectral intensity are increased at the higher laser pulse intensities, laser pulse durations and plasma densities. Moreover, the generated THz electric field amplitude is reduced at the higher laser pulse durations. A wider frequency range for the generated THz signal is shown at the lower laser pulse durations and higher plasma densities. Additionally, it is found that the induced current density in hydrogen plasma medium is the dominant factor influencing the generation of THz pulse radiation. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Laser‐induced incandescence (LII) is introduced as a valuable tool for the characterization of nanoparticles. This optical measurement technique is based on the heating of the particles by a short laser pulse and the subsequent detection of the thermal radiation. It has been applied successfully for the investigation of soot in different fields of application, which is described here in the form of an overview with a focus on work done at the LTT‐Erlangen during the last 10 years. In laboratory flames the soot primary particle size, volume concentration, and relative aggregate size have been determined in combination with the number density of primary particles. Furthermore, the primary particle sizes of carbon blacks have been measured in situ and online under laboratory conditions and also in production reactors. Measurements with different types of commercially available carbon black powders, which were dispersed in a measurement chamber yielded a good correlation between LII results and the specified product properties. Particle diameters determined by LII in a furnace black reactor correlate very well with the CTAB‐absorption number, which is a measure for the specific surface area. It turned out that the LII method is not affected by variations of the aggregate structure of the investigated carbon blacks. The LII signal also contains information on the primary particle size distribution, which can be reconstructed by the evaluation of the signal decay time at, at least, two different time intervals. Additionally, soot mass concentrations have been determined inside diesel engines and online measurements were performed in the exhaust gas of such engines for various engine conditions simultaneously providing information about primary particle size, soot volume, and number concentration. The LII results exhibit good correlation with traditional measurement techniques, e.g., filter smoke number measurements. In addition to the soot measurements, primarily tests with other nanoparticles like TiO2 or metal particles are encouraging regarding the applicability of the technique for the characterization of such different types of nanoparticles.  相似文献   

10.
Understanding the mechanism of plasma build‐up in vacuum arcs is essential in many fields of physics. A one‐dimensional particle‐in‐cell computer simulation model is presented, which models the plasma developing from a field emitter tip under electrical breakdown conditions, taking into account the relevant physical phenomena. As a starting point, only an external electric field and an initial enhancement factor of the tip are assumed. General requirements for plasma formation have been identified and formulated in terms of the initial local field and a critical neutral density. The dependence of plasma build‐up on tip melting current, the evaporation rate of neutrals and external circuit time constant has been investigated for copper and simulations imply that arcing involves melting currents around 0.5–1 A/μm2, evaporation of neutrals to electron field emission ratios in the regime 0.01 – 0.05, plasma build‐up timescales in the order of ~ 1 – 10 ns and two different regimes depending on initial conditions, one producing an arc plasma, the other one not. Also the influence of the initial field enhancement factor and the external electric field required for ignition has been explored, and results are consistent with the experimentally measured local field value of ~ 10 GV/m for copper (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
用2.5维粒子模拟程序模拟了超强激光与等离子体的相互作用过程,发现超强激光可以通过J×B加热机制加速电子并引起电荷分离,从而产生很强的静电场并形成电场势阱,电子在静电场势阱中振荡,被多次加速,使得高速电子被甩出势阱,进而增强电荷分离,然后静电场结构被破坏,静电势能传给电子。在此过程中,电子在此阱中作局域振荡,并且被J×B机制多次加速,激光的能量会有效地传给电子,使电子能量高达10MeV。这是一种新的电子加热机制,称之为局域振荡电子加热机制。  相似文献   

12.
Generation of the terahertz (THz) radiation based on the beating of two cross‐focused high intensity Gaussian laser beams in a warm rippled density plasma is numerically investigated, taking into account the ponderomotive force, Ohmic heating, and collisional nonlinearities. The beat ponderomotive force as a result of cross‐focusing of beams induces a vertical velocity component that by coupling with the rippled density gives rise to a nonlinear current deriving THz radiation. The effect of laser beams spot size evolution and plasma parameters on the THz generation is studied. It was found that there exist special electron temperature and laser intensity ranges with “turning points” where the generation of THz radiation reaches its maximum value and outside of these ranges, it disappears. The results also indicated that increasing the background electron density as well as taking into account the collision frequency help THz generation. Moreover, the maximum yield of THz radiation occurs when the beat wave frequency approaches the plasma frequency.  相似文献   

13.
 用等离子体粒子模拟方法对超强激光等离子体相互作用中的J×B加热机制进行了二维模拟, 简要分析了其加热机制。粒子模拟结果清晰地反映了电子的加热过程和加热特征。  相似文献   

14.
In this work we evaluate the interaction of high intense laser beam with a steepened density profile. During laser interaction with underdense plasma by freely expanding plasma regime, modification of density profile is possible. In this paper we have investigated the ultra short laser pulse interaction with nonisothermal and collisionless plasma. We consider self–focusing as an effective nonlinear phenomenon that tends to increase when the laser power is more than critical rate. By leading the expanded plasma to a preferred location near to critical density, laser reflection is obtained, so the density profile will be locally steepened. The electromagnetic fields are evaluated in this new profile. We show the amplitude and period of electrical field oscillation are increased by reducing the steepened scale length. Also our numerical results identify that by reducing the steepened scale length, the electrical field is increased to wave breaking threshold limit. This high gradient electrical field causes the effective beam loading during the wave breaking phenomenon. The wave breaking can be the initial point for other acceleration regime as cavity or channel guiding regime. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
A novel drug carrier is presented consisting of plasmonic hollow gold nanoshells (HGN) chemically tethered to liposomes made temperature sensitive with lysolipids (TSL). Continuous‐wave irradiation by physiologically friendly near‐infra‐red light at 800 nm for 2.5 min at laser intensities an order of magnitude below that known to damage skin generates heating localized to the liposome membrane. The heating increases the liposome permeability in an irradiation dose dependent, but reversible manner, resulting in rapid release of small molecules such as the self‐quenching dye carboxyfluorescein or the chemotherapeutic doxorubicin, without raising the bulk temperature. The local rise in nanoshell temperature under laser irradiation is inferred by comparing dye release rates from the TSL via bulk heating to that induced by irradiation. Laser‐irradiation of TSL enables precise control of contents release with low temperature gradients confined to areas irradiated by the laser focus. The combined effects of rapid local release and localized hyperthermia provide a synergistic effect as shown by a near doubling of androgen resistant PPC‐1 prostate cancer cell toxicity compared to the same concentration of free doxorubicin.  相似文献   

16.
Recently developed multi‐dimensional coupled fluid‐droplet model is used to investigate the behavior of complex interaction between the liquid precursor droplets and atmospheric pressure plasma (APP). The significance of this droplet‐plasma interaction is not well understood under diverse realm of working conditions in two‐phase flow. In this study, we explain the implication of vaporization of liquid droplets in APP which are subsequently responsible to control major characteristics of surface coating depositions. Coalescence of water droplets is more dominant than Hexamethyldisiloxane (HMDSO) droplets because of its sluggish rate of evaporation. A disparity in the performance of evaporation is identified in two independent mediums, such as gas mixture and discharge plasma using HMDSO precursor. The length of evaporation of droplets is amplified by an increment of gas flow rate indicating with a reduction in the gas temperature and electron mean energy. In particular, the spatio‐temporal density distributions of charged particles show a clear pattern in which the typical nitrogen impurity ions are primarily effective as compared to other helium ionic species along the pulse of droplets in APP. Finally, we contrast the behavior of discharge species in the pure helium and He‐N2 gas mixtures revealing the importance of stepwise and Penning ionization processes. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Planar emissive probe is studied for the first time using a massively parallel particle‐in‐cell code BIT1 [22]. The probe is immersed in a plasma similar to edge plasmas of mid‐sized tokamaks. Dependence of the floating potential on electron emission from the probe is studied. With increasing emission the floating potential increases, but then saturates ~2Te below the actual plasma potential (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
The effect of floating conductive electrodes near the channel exit of an Aton‐type Hall thruster on ion focusing acceleration is studied by simulating the two‐dimensional plasma flow with a fully kinetic Particle‐in‐Cell method for the gas flow rate ja ranged in 1~3 mg/s. Numerical results show that low‐emissive electrodes can reduce plume divergence if the electrode length is less than 2 mm due to the low secondary electron emissive characteristic, but widen plume in all the gas flow rate range if the electrode length is greater than 2mm since the conductive property of segmented electrodes trends to make equipotential lines convex toward channel exit and is even parallel to the wall surface in the near‐wall region. Further investigation predicts that the combination of high emissive dielectric wall and segmented low‐emissive dielectric wall is a promising way to reduce plume divergence (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
The use of confocal Raman microscopy is applied to the study of whey‐protein‐stabilized oil‐in‐water emulsions. The stability of emulsions is an important parameter for many applications and is dependent on several factors including protein content and particle size. Emulsions were prepared with varying particle size ranging from 0.8 to 10.0 µm. Changes in sample volume due to laser‐induced heating were monitored and correlated to protein content in samples and to particle diameters. It was found that samples with the lowest protein content and larger particle diameters experienced the largest volume changes. The newly developed approach is of a potential predictive use. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Micro‐ and nano‐electromechanical systems (MEMS and NEMS) fabricated in 3 C‐SiC are receiving particular attention thanks to the material physical properties: its wide band gap (2.3 eV), its ability to operate at high temperatures, its mechanical strength and its inertness to the exposure in corrosive environments. However, high residual stress (which is normally generated during the hetero‐epitaxial growth process) makes the use of 3 C‐SiC in Si‐based MEMS fabrication techniques very limited leading to a failure of micro‐machined/sensor structures. In this paper, micro‐Raman characterizations and finite‐element modeling (FEM) of microstructures realized on poly and single‐crystal (100) 3 C‐SiC/Si films are performed. Transverse optical (TO) Raman mode analysis reveals the stress relaxation on the free standing structure (796.5 cm−1) respect to the stressed unreleased region (795.7 cm−1). Also, microstructures as cantilever, bridge and planar rotating probe show an intense stress field located around the undercut region. Here, the TO Raman mode undergoes an intense shift, up to 2 cm−1, ascribed to the modification of the Raman stress tensor. Indeed, the generalized axial regime, described by diagonal components of the Raman stress tensor, cannot be applied in this region. Raman maps analysis and FEM simulations show the ‘activation’ of the shear stress, i.e. non‐diagonal components of the stress tensor. The stress‐Raman modes shift correlation, in the case of fully non‐diagonal stress tensors, has been investigated. The aim of future works will be to minimize the stress field generation and the defects density within the epitaxial layer. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号