首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relative motion of single long air bubbles suspended in a constant liquid flow in inclined tubes has been studied experimentally. Specially designed instrumentation, based on the difference in refractive properties of air and liquid with respect to infrared light, has been constructed and applied to measure bubble propagation rates.A series of experiments were performed to determine the effect of tube inclination on bubble motion with liquid Reynolds and Froude numbers, and tube diameter as the most important parameters.Particular aspects of the flow are described theoretically, and model predictions were found to compare well with observations. A correlation of bubble and average liquid velocities, based on a least squares fit to the data is suggested. Comparisons with other relevant models and data are also presented.  相似文献   

2.
Measurements have been obtained, by laser-Doppler anemometry (LDA), of the axisymetric, recirculating liquid flow caused by a column of air bubbles (5–612mm dia.) rising through caster oil in a cylindrical enclosure (100 mm dia.). The liquid velocities correspond to creeping flow. Axial and radial liquid velocity profiles are reported at eight axial stations and, close to within the bubble column, as a function of time. The maximum liquid velocity found outside the bubble column is about 0.5 of that of the bubbles and a very rapid radical decay from this value is noted. The temporal variation of the velocity field, due to the passage of the air bubbles, is undetectable at radial locations greater than about 112 bubble radii from the centreline.The variation of bubble velocity with axial distance was aise measured by LDA for liquid height to enclosure diámeter ratios of 0.98 and 2.78. The maximum bubble velocities were about 0.1–0.2 higher than the Strokes law terminal velocity. The increase is due to the convection of the bubble column by the liquid flow. The maximum bubble velocity is established within approximately three bubble diameters of the air inlet.The motion of the liquid has been calculated by the numerical solution of the steady form of the equations of motion, with the inner boundary of the area of integration lying 1.3 bubble radii from the centerline. The boundary conditions at this surface are assumed to be steady and are taken from measurements of the time-averaged velocity components. The assumption of steady flow at this boundary is supported by experimental observation and results in calculations which are generally in close agreement with the measurements. Discrepancies are confined to the immediate vicinity of the bubble column near to the top and bottom of the enclosure. These are ascribed to a combination of small asymmetries in the experiment and inadequate numerical resolution in these regions.  相似文献   

3.
 This paper has dealt with direct contact heat and mass transfer characteristics of air bubbles in a hot water layer. The experiments were carried out by bubbling air in the hot water layer under some experimental conditions of air flow rate, inlet air temperature and humidity as a dispersion fluid, and hot water temperature and hot water layer depth as a continuous fluid. Heat transfer and evaporation of water vapor from hot water to air bubbles occurred during air bubbles ascending into the hot water. Air bubble flow patterns were classified into three regions of independent air bubble flow, transition and air bubble combination growth. Non-dimensional correlation equations of direct contact heat and mass transfer between air bubbles and hot water were derived by some non- dimensional parameters for three regions of bubble flow pattern. Received on 14 July 2000 / Published online: 29 November 2001  相似文献   

4.
The present study seeks to investigate horizontal bubbly-to-plug and bubbly-to-slug transition flows. The two-phase flow structures and transition mechanisms in these transition flows are studied based on experimental database established using the local four-sensor conductivity probe in a 3.81 cm inner diameter pipe. While slug flow needs to be distinguished from plug flow due to the presence of large number of small bubbles (and thus, large interfacial area concentration), both differences and similarities are observed in the evolution of interfacial structures in bubbly-to-plug and bubbly-to-slug transitions. The bubbly-to-plug transition is studied by decreasing the liquid flow rate at a fixed gas flow rate. It is found that as the liquid flow rate is lowered, bubbles pack near the top wall of the pipe due to the diminished role of turbulent mixing. As the flow rate is lowered further, bubbles begin to coalesce and form the large bubbles characteristic of plug flow. Bubble size increases while bubble velocity decreases as liquid flow rate decreases, and the profile of the bubble velocity changes its shape due to the changing interfacial structure. The bubbly-to-slug transition is investigated by increasing the gas flow rate at a fixed liquid flow rate. In this transition, gas phase becomes more uniformly distributed throughout the cross-section due to the formation of large bubbles and the increasing bubble-induced turbulence. The size of small bubbles decreases while bubble velocity increases as gas flow rate increases. The distributions of bubble size and bubble velocity become more symmetric in this transition. While differences are observed in these two transitions, similarities are also noticed. As bubbly-to-plug or bubbly-to-slug transition occurs, the formation of large elongated bubbles is observed not in the uppermost region of bubble layer, but in a lower region. At the beginning of transitions, relative differences in phase velocities near the top of the pipe cross-section to those near the pipe center become larger for both gas and liquid phases, because more densely packed bubbles introduce more resistance to both phases.  相似文献   

5.
This study investigates flow patterns and bubble dynamics of two-phase flow around two 100 μm diameter circular pillars in tandem, which were entrenched inside a horizontal micro channel. Bubble velocity, trajectory, size, and void fraction were measured using a high speed camera and analyzed using a particle tracking velocimetry method. A range of gas and liquid superficial velocities were tested, resulting in different bubbly flow patterns, which were consistent with previous studies. These flow patterns were altered as they interacted with the pillars. Depending on the relative transverse location of bubbles to the pillars, and through bubble–bubble interaction, the flow sometimes returned to its original state. It was also determined that the pillars altered both the bubble trajectory and void fraction, especially in the pillars region.  相似文献   

6.
An experimental investigation of cocurrent bubble flow in 0.0254 m and 0.0508 m diameter horizontal pipelines has been performed. Gas and liquid mass velocities ranged from 0.00955 to 0.675 and 2720 to 6040 kg/m2 sec, respectively, and gas-phase holdups or void fractions ranged from 0.13 to 7.59%.High speed motion pictures revealed that the gas, introduced into the liquid with a concentric nozzle, emerged in the form of a rough jet which was ultimately sheared into 1 times; 10minus;3 to 3 times; 10minus;3m diameter bubbles. Approximately 4 meters downstream from the nozzle, a well developed bubble flow was observed where bubble number density and axial velocity were constant with respect to axial position in the pipeline. Bubble velocities ranged from 0.001 to 0.57 m/sec greater than the average liquid velocities. Bubble radial and circumferential spatial distributions were found to be a strong function of the degree of turbulence in the liquid phase. Because of these turbulent flow conditions, bubble shapes were much different than those of equivalent diameter bubbles rising in stagnant liquids. A sphere-ellipsoid of revolution model was developed for characterization of bubble shape and computation of gas-liquid interfacial area and two-phase pressure drop.  相似文献   

7.
Laboratory experiments have been performed on the flow of oil, water and air through a vertical pipe in order to study the gas-lift technique for oil–water flows. Special attention was paid to the phase inversion phenomenon, by which the continuous phase switches to the dispersed phase and vice versa. By using different types of gas injectors the influence of the bubble size of the injected air on the efficiency of the gas-lift technique (in particular at the point of phase inversion) was studied. Also the gas and liquid mixture velocities were varied. The air bubbles were detected by means of optical fibre probes. Local measurements of the time-averaged gas volume fraction, bubble size and bubble velocity were carried out, as well as pressure measurements.  相似文献   

8.
A method which combines standard two-dimensional particle image velocimetry (PIV) with a new image processing algorithm has been developed to measure the average local gas bubble velocities, as well as the local velocities of the liquid phase, within small stirred vessel reactors. The technique was applied to measurements in a gas–liquid high throughput experimentation (HTE) vessel of 45 mm diameter, but it is equally suited to measurements in larger scale reactors. For the measurement of liquid velocities, 3 μm latex seeding particles were used. For gas velocity measurements, a separate experiment was conducted which involved doping the liquid phase with fluorescent Rhodamine dye to allow the gas–liquid interfaces to be identified. The analysis of raw PIV images enabled the detection of bubbles within the laser plane, their differentiation from obscuring bubbles in front of the laser plane, and their use in lieu of tracer particles for gas velocity analysis using cross-correlation methods. The accuracy of the technique was verified by measuring the velocity of a bubble rising in a vertical glass column. The new method enabled detailed velocity fields of both phases to be obtained in an air–water system. The overall flow patterns obtained showed a good qualitative agreement with previous work in large scale vessels. The downward liquid velocities above the impeller were greatly reduced by the addition of the gas, and significant differences between the flow patterns of the two-phases were observed.  相似文献   

9.
In the present study the effects of surface tension on the growth and collapse stages of cavitation bubbles are studied individually for both spherical and nonspherical bubbles. The Gilmore equation is used to simulate the spherical bubble dynamics by considering mass diffusion and heat transfer. For the collapse stage near a rigid boundary, the Navier–Stokes and energy equations are used to simulate the flow domain, and the VOF method is adopted to track the interface between the gas and the liquid phases. Simulations are divided into two cases. In the first case, the collapse stage alone is considered in both spherical and nonspherical situations with different conditions of bubble radius and surface tension. According to the results, surface tension has no significant effects on the flow pattern and collapse rate. In the second case, both the growth and collapse stages of bubbles with different initial radii and surface tensions are considered. In this case surface tension affects the growth stage considerably and, as a result, the jet velocity and collapse time decrease with increasing surface tension coefficient. This effect is more significant for bubbles with smaller radii.  相似文献   

10.
Air injection as a stabilization method is evaluated for flow boiling in a micro tube. Pyrex glass tube coated by ITO film is employed as a test tube for flow visualization with water as a working fluid. Air bubble and liquid slug lengths are controlled by changing air and liquid mass velocities. Wall temperatures and inlet/outlet pressures show very large fluctuations during flow boiling without air injection. Severe reverse flow is also observed from flow visualization. On the other hand, wall temperature and inlet/outlet pressures as well as visualized flow patterns become very stable with air injection. In addition, much higher heat transfer coefficients are obtained for air injected cases. It is observed from the flow visualization that the flow becomes much stable and shows regular patterns.  相似文献   

11.
In this paper, the saturated pool boiling is investigated using lattice Boltzmann method. The written FORTRAN code is validated in two aspects: For flow, the thermodynamic consistency test and Laplace law are applied and for heat transfer, the space- and time- averaged Nusselt number is compared with Berenson analytical solution in film boiling regime. In addition, the results of bubble generation and departure are compared with some well-known analytical solutions to show the accuracy of the code. It is confirmed that bubble departure diameter and the departure frequency are related to the gravity acceleration with powers of ? 0.505 and 0.709, respectively, which is in a very good agreement with the existing analytical expressions. The present model has the ability to tune different surface tensions independent of liquid/vapor density ratio, which was unreachable using other existing numerical models of boiling. Thus, the sole effects of surface tension on boiling can also be taken into consideration using the present model. It is also shown that the departure diameter is related to the surface tension with a power of 0.485, which is in good agreement with the analytical expressions. Temperature contours are shown together with flow lines to have a better viewpoint for studying the bubble’s behavior. An intensive temperature gradient is observed in the necking area at the departure time. All the four boiling regimes in the boiling curve are simulated under constant temperature boundary condition. The Prandtl number effects on vapor bubble dynamics in the film boiling regime are investigated using the improved Shan and Chen model for the first time. Results revealed that bubbles are more resistant to depart from the vapor blanket with increasing the Prandtl number.  相似文献   

12.
 A one-dimensional model is presented, which describes the transient two-phase flow in thin pipes during fast pressure drops and degassing by use of Eulerian and Lagrangian systems. The reduction in dimension is obtained by introduction of a geometry model for bubbly and slug flow regimes. The complete model includes the transient two-phase flow, bubble formation and bubble growth. The flow model predicts rising velocities of bubbles and plugs in arbitrary inclined highly accurate pipes. The mass transfer (diffusion) of the dissolved phase is calculated by the bubble growth model. The quality of the model was examined by simulation of experimental series, whereby water was depressurised from the saturation pressure of the dissolved gas mixture (air), by variation of saturation pressure, pressure gradient and pipe geometry. The results of numerical simulation fit the experimental data well. Received on 17 January 2000  相似文献   

13.
An experimental study is reported that investigated the bubble formation from a novel nozzle design in a liquid cross-flow using high speed imaging. Different configurations and orientations of the novel nozzle design were considered over a range of gas-to-liquid flow rate ratios (GLR) from 0.00031 to 0.00204. The results show that for all cases, the novel nozzle generated smaller bubbles at higher detachment frequency compared to the standard nozzle. At low liquid velocities, the novel nozzle generated bubbles that were 30% smaller in size at a detachment frequency 2–3 times higher than that for the standard nozzle. It was also found that the bubble diameter and the detachment frequency are almost independent of the liquid velocity. The underlying physical process of bubble formation and detachment in the novel nozzle under liquid cross-flow was also investigated. It was observed that the process comprised of three phases: expansion, collapse and pinch off. It was also found that the rebound force of the bubble from a side-hole under the influence of liquid drag force and hydrostatic pressure plays a key role in the early bubble detachment. The results demonstrated that the novel nozzle design performs better than the standard nozzle in the liquid cross-flow, especially at high GLRs.  相似文献   

14.
Based on the bubble dynamic theory and the compressible two-phase flow solver of the open source software Open FOAM, a numerical simulation study is carried out on the interactions of bubble clusters in a closed volume. The bubble dynamics and interactions of a single bubble, two bubbles, and four bubbles are investigated under the working conditions without and with the presence of a free surface. Through a parametric study, the qualitative patterns of the variations of the bubble collapse period,the volume compressibility, the bubble pressure peak value, and the breakdown, fusion,and separation phenomena with the parameters such as the bubble pressure, the radius size, the bubble spacing, and the distance from the free surface are obtained. The main factors affecting the bubble morphology and the dynamic characteristics are summarized from numerous parameter experiments. It is shown that, in the absence of a free surface,the main factors are the relative size of the bubbles, the pressure of the liquid, and the pressure differences among the bubbles, while in the presence of a free surface, the main factor is the pressure of the liquid between the upper surface of the bubble and the free surface.  相似文献   

15.
Dimensionless scales of radius and time, proposed by the authors in a previous study, were used to quantitatively analyze the bubble departure radius and time during nucleate pool boiling. The results obtained from dimensional analysis were compared with experimental data reported in many studies. These experimental data are including partial nucleate pool boiling data with constant heat flux and temperature conditions acquired over the past 40 years at atmospheric and sub-atmospheric pressures, as well as data obtained at subcooled, saturated, and superheated pool temperature conditions.It was shown that the departure radius and time could be well correlated with respect to Jakob number as proposed by the previous studies. And the bubble departure behaviors well categorized between atmospheric and sub-atmospheric pressure, which is occurred from the different growth rate near the departure time partial nucleate pool boiling.For almost all obtained under atmospheric pressure, the dimensionless departure radius and time scales were about 25 and 60, respectively. For higher Jakob number, the square root of Bond number was proportional to the power of 0.7 of Jakob number, little different from the previous correlations. The dimensional departure radius and time estimated from the relationships proposed in this study were compared with measured departure scales and the results obtained with the previous correlations. And it was shown that the relationships could well predict and describe the departure behaviors of bubble during nucleate pool boiling.  相似文献   

16.
Interactions between large coherent structures and bubbles in two-phase flow can be systematically observed in a periodically excited bubbly jet. Controlled excitation at fixed frequency causes large eddy structures to develop at regular intervals. Thus, interactions between large vortices and bubbles can be studied with PIV and double optical sensors (DOS) using phase-averaging techniques. A number of results on the time and space dependence of velocities and void fractions are presented revealing physical interactions between the liquid flow field and bubble movement as well as feedbacks from bubble agglomeration on the development of flow structures. A clear indication of bubble trapping inside the vortex ring is the generation of a bubble ring that travels with the same velocity as the vortex ring. The DOS results indicate clustering of the bubbles in coherent vortex structures, with a periodic variation of void fraction during the excitation period.  相似文献   

17.
This paper presents a combined experimental and numerical study of the flow characteristics of round vertical liquid jets plunging into a cylindrical liquid bath. The main objective of the experimental work consists in determining the plunging jet flow patterns, entrained air bubble sizes and the influence of the jet velocity and variations of jet falling lengths on the jet penetration depth. The instability of the jet influenced by the jet velocity and falling length is also probed. On the numerical side, two different approaches were used, namely the mixture model approach and interface-tracking approach using the level-set technique with the standard two-equation turbulence model. The numerical results are contrasted with the experimental data. Good agreements were found between experiments and the two modelling approaches on the jet penetration depth and entraining flow characteristics, with interface tracking rendering better predictions. However, visible differences are observed as to the jet instability, free surface deformation and subsequent air bubble entrainment, where interface tracking is seen to be more accurate. The CFD results support the notion that the jet with the higher flow rate thus more susceptible to surface instabilities, entrains more bubbles, reflecting in turn a smaller penetration depth as a result of momentum diffusion due to bubble concentration and generated fluctuations. The liquid average velocity field and air concentration under tank water surface were compared to existing semi-analytical correlations. Noticeable differences were revealed as to the maximum velocity at the jet centreline and associated bubble concentration. The mixture model predicts a higher velocity than the level-set and the theory at the early stage of jet penetration, due to a higher concentration of air that cannot rise to the surface and remain trapped around the jet head. The location of the maximum air content and the peak value of air holdup are also predicted differently.  相似文献   

18.
The dynamics of bubble formation from a submerged nozzle in a highly viscous liquid with relatively fast inflow gas velocity is studied numerically. The numerical simulations are carried out using a sharp interface coupled level set/volume-of-fluid (CLSVOF) method and the governing equations are solved through a hydrodynamic scheme with formal second-order accuracy. Numerical results agree well with experimental results and it is shown that the sharp interface CLSVOF method enables one to reproduce the bubble formation process for a wide range of inflow gas velocities. From numerical results, one can improve their understanding of the mechanisms regarding the dynamics of bubble formation. For example, it is found that for some sets of parameters that the bubble formation process reaches steady state after several bubbles are released from the nozzle. At steady state, bubbles uniformly rise freely in the viscous liquid. It is observed that the fluid flow around a formed bubble has a significant role in determining the overall dynamic process of bubble formation; e.g. the effect of the fluid flow from the preceding bubble can be seen on newly formed bubbles.  相似文献   

19.
Transition of plug to slug flow is associated with bubble detachment from elongated bubble tail or bubble entrainment inside the liquid slug. The mechanism responsible for this transition was earlier identified by Ruder and Hanratty (1990) and Fagundes Netto et al. (1999) based on the shape of the hydraulic jump observed at elongated bubble tail region. The transition mechanism reported by Ruder and Hanratty (1990) and Fagundes Netto et al. (1999) was only based on their flow visualization study. Plug to slug transition and associated dynamics of bubble detachment from the elongated bubble is analysed in the present paper using flow visualization and local velocity measurements. Experiments are reported for 13 different inlet flow conditions of air and water phases. Images of plug/slug flow structures are captured at a rate of 4000 FPS using FASTCAM Photron camera and the local values of axial liquid velocity are measured using LDV system synchronised with a 3D automated traverse system. LDV measurement of local liquid velocity in the liquid slug and liquid film establishes the reason for detachment of bubbles from the slug bubble tail.  相似文献   

20.
This work is an experimental study of the rising behavior of single air bubbles in infinite stagnant non-Newtonian liquids. Aqueous solutions of carboxymethyl cellulose (CMC) are selected to study the effect of rheological properties. The high speed photography is employed to record the bubble motion in CMC solutions. The bubble size, rising trajectory, bubble shape and velocities are determined by digital image processing technique. As expected, the rheological properties have great influence on the rising behavior of single bubble. In the less concentrated CMC solutions, the bubble rising process can be divided into three stages according to spatial evolution of bubble shape. The deformation changes the trajectories of rising bubbles and bubble hydrodynamics. As the solution concentration increases, the transitional stage gradually disappears. In the most concentrated CMC solution, the first continuous shape flattening stage is directly followed by a rising process with bubble shape basically constant, the rectilinear path and constant rising velocity. Dimensional analysis is performed to formulate a general dimensionless correlation for the deformation and motion of bubbles in infinite liquids by considering the rheological properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号