首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
We combine theoretical and experimental methods to study the processes induced by fast laser heating of metal foils. These processes reveal themselves through motion of frontal (irradiated) and rear‐side foil boundaries. The irradiated targets are 0.3‐2 micron thick aluminum foils deposited on much thicker (150 microns) glass plate. The instant boundary positions is measured by pump‐probe technique having ∼40‐150 fs time and ∼1 nm spatial resolutions. Ultrashort laser pulse transforms a frontal surface layer with thickness dT into two‐temperature (TeTi) warm dense matter state. Its quantitative characteristics including its thickness are defined by poorly known coefficients of electron‐ion energy exchange α and electron heat conductivity κ. Fast laser heating rises pressure in the dT‐layer and therefore produce acoustic waves. Propagation and reflection from the frontal and rear boundaries of these waves causes the displacement Δx (t) of boundary positions. Pressure wave profiles, and hence functions Δx (t), depend on thickness dT. This is why the experimental detection of Δx (t) opens a way to accurate evaluation of the coefficients α and κ (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
It is found that the collective effects operating at large distances from the grain surface can produce substantial scattering of the ion flux and create an additional collective drag force dominant for large grain densities. The consideration is restricted to large grain charges β = Zde 2a /TiλDi ? 1 and Ti /Te ? 1 (–eZd being the grain charge in units of electron charge, a being the grain size, λDi being the ion Debye radius and Te,i being electron and ion temperatures, respectively). For present dusty plasma experiments β ≈ 10–50, the large charges of grains are screened non‐linearly and the ion scattering creates non‐linear drag force. The present investigation considers effects of scattering by collective grain fields at large distances from the grains. It is found that the physical reason of the importance of collective drag force, calculated in this paper, is related to presence of weakly screened collective field of grains outside the non‐linear screening distance depending on grain densities. The amplitude of this collective fields of the grains is determined by non‐linear screening at non‐linear screening radius. It is shown that for dust densities of present experiments the collective drag force related to this scattering can be of the order of the non‐linear drag force caused by scattering inside the non‐linear screening radius or even larger. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
The ―NH2, ―NO2, ―NHNO2, ―C(NO2)3 and ―CF(NO2)2 substitution derivatives of 4,4′,5,5′‐tetranitro‐2,2′‐1H,1′H‐2,2′‐biimidazole were studied at B3LYP/aug‐cc‐pVDZ level of density functional theory. The crystal structures were obtained by molecular mechanics (MM) methods. Detonation properties were evaluated using Kamlet–Jacobs equations based on the calculated density and heat of formation. The thermal stability of the title compounds was investigated via the energy gaps (?ELUMO ? HOMO) predicted. Results show that molecules T5 (D = 10.85 km·s?1, P = 57.94 GPa) and T6 (D = 9.22 km·s?1, P = 39.21 GPa) with zero or positive oxygen balance are excellent candidates for high energy density oxidizers (HEDOs). All of them appear to be potential explosives compared with the famous ones, octahydro‐1,3,5,7‐tetranitro‐1,3,5,7‐tetraazocane (HMX, D = 8.96 km·s?1, P = 35.96 GPa) and hexanitrohexaazaisowurtzitane (CL‐20, D = 9.38 km·s?1, P = 42.00 GPa). In addition, bond dissociation energy calculation indicates that T5 and T6 are also the most thermally stable ones among the title compounds. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
We have studied the validity of the double‐probe method in recombining plasmas. Electron temperature (Te) measured with a double probe was quantitatively evaluated by taking into account the influences of plasma potential fluctuation, plasma resistivity, and electron density fluctuation on the current–voltage characteristics. Differential potential fluctuation and plasma resistivity between two electrodes have a minor effect on Te especially when the inter‐distance is small (typically 1 mm). Scattering of measured Te due to the density fluctuation was sufficiently suppressed by making the data acquisition time long (typically 4 s) and taking the average. There is a good agreement between Te measured with the optimized double‐probe method and that with laser Thomson scattering diagnostics.  相似文献   

5.
It is shown that the collective dust‐dust attraction is enhanced by strong magnetic fields larger then the critical magnetic field determined be the condition that the Lorentz force acting on ions is larger than the friction of ions on dust grains related with the dust drag. It is demonstrated that with an increase of the magnetic field the deepness of the attraction potential well is increased in all directions to the magnetic field, that the distance of the minimum of the potential well along the magnetic filed (in both directions) is changed only slightly while the distance of the minimum of the attraction potential well is substantially decreased for directions perpendicular to the magnetic field. This means that the structures formed by attraction forces such as plasma crystals will be compressed perpendicular to the magnetic field (inter‐dust distance becomes smaller) and that the melting transition temperature should increased with an increase of the strength of the magnetic field. Numerical results are presented for dependence of the attraction potential well on the ratio of the strength of the magnetic field to the critical magnetic field strength, on the parameter P = ndZd/ni (nd and ni being the dust and ion densities respectively) and on the temperature ratio τ = Ti/Te (Te and Ti being the electron and ion temperatures respectively). (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Solvent, temperature, and high pressure influence on the rate constant of homo‐Diels–Alder cycloaddition reactions of the very active hetero‐dienophile, 4‐phenyl‐1,2,4‐triazolin‐3,5‐dione (1), with the very inactive unconjugated diene, bicyclo[2,2,1]hepta‐2,5‐diene (2), and of 1 with some substituted anthracenes have been studied. The rate constants change amounts to about seven orders of magnitude: from 3.95.10?3 for reaction (1+2) to 12200 L mol?1 s?1 for reaction of 1 with 9,10‐dimethylanthracene (4e) in toluene solution at 298 K. A comparison of the reactivity (ln k2) and the heat of reactions (?r‐nH) of maleic anhydride, tetracyanoethylene and of 1 with several dienes has been performed. The heat of reaction (1+2) is ?218 ± 2 kJ mol?1, of 1 with 9,10‐dimethylanthracene ?117.8 ± 0.7 kJ mol?1, and of 1 with 9,10‐dimethoxyanthracene ?91.6 ±0.2 kJ mol?1. From these data, it follows that the exothermicity of reaction (1+2) is higher than that with 1,3‐butadiene. However, the heat of reaction of 9,10‐dimethylanthracene with 1 (?117.8 kJ mol?1) is nearly the same as that found for the reaction with the structural C=C counterpart, N‐phenylmaleimide (?117.0 kJ mol?1). Since the energy of the N=N bond is considerably lower (418 kJ/bond) than that of the C=C bond (611 kJ/bond), it was proposed that this difference in the bond energy can generate a lower barrier of activation in the Diels–Alder cycloaddition reaction with 1. Linear correlation (R = 0.94) of the solvent effect on the rate constants of reaction (1+2) and on the heat of solution of 1 has been observed. The ratio of the volume of activation (?V) and the volume of reaction (?Vr‐n) of the homo‐Diels–Alder reaction (1+2) is considered as “normal”: ?V/?Vr‐n = ?25.1/?30.95 = 0.81. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Hot electron cooling rate P, due to acoustic phonons, is investigated in three‐dimensional Dirac fermion systems at low temperature taking account of the screening of electron–acoustic phonon interaction. P is studied as a function of electron temperature Te and electron concentration ne. Screening is found to suppress P very significantly for about Te < 0.5 K and its effect reduces considerably for about Te > 1 K in Cd3As2. In Bloch–Grüneisen (BG) regime, for screened (unscreened) case the Te dependence is PTe9(Te5) and the ne dependence gives Pne–5/3 (ne–1/3). The Te dependence is characteristic of 3D phonons and ne dependence is characteristics of 3D Dirac fermions. The plot of P /Te4 vs. Te shows a maximum at temperature Tem which shifts to higher values for larger ne. Interestingly, the maximum is nearly same for different ne and Tem/ne1/3 being nearly constant. More importantly, we propose, the ne dependent measurements of P would provide a clearer signature to identify 3D Dirac semimetal phase. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

8.
Hybrid organic‐inorganic light‐emitting diodes were developed with pristine ZnO (2.0 wt%) and Cu‐doped ZnO (2.0 wt%) as electron injection layer and iridium(III)‐bis‐2‐(4‐fluorophenyl)‐1‐(naphthalen‐1‐yl)‐1H‐phenanthro[9,10‐d]imidazole (acetylacetonate) [Ir(fpnpi)2 (acac)] as green emissive layer (521 nm). The pristine ZnO and Cu‐doped ZnO are deposited at indium tin oxide cathode and emissive layer interface. The electroluminescent performances increased by electron injection layer–Cu‐doped ZnO compared with ZnO‐based device because Cu‐doped ZnO injects electron efficiently result in balanced h+ ? e? recombination in emissive layer than ZnO‐based device. The Cu‐doped ZnO (2.0 %) device shows luminance (L) of 10 982 cd/m2 at 23.0 V (ZnO, 1450 cd/m2 at 23.0 V).  相似文献   

9.
syn‐2,2,4,4‐Tetramethyl‐3‐{2‐[3,4‐alkylenedioxy‐5‐(3‐pyridyl)]thienyl}pentan‐3‐ols self‐associate both in the solid state and in solution. Single‐crystal X‐ray diffraction study of the 3,4‐ethylenedioxythiophene (EDOT) derivative shows that it exists as a centrosymmetric head‐to‐tail, syn dimer in the solid state. The IR spectra of the solids display only a broad OH absorption around 3300 cm?1, corresponding to a hydrogen‐bonded species. 1H Nuclear Overhauser Effect Spectroscopy (NOESY) NMR experiments in benzene reveal interactions between the tert‐butyl groups and the H2 and H6 protons of the pyridyl group. Two approaches have been used to determine association constants of the EDOT derivative by NMR titration, based on the concentration dependence of (i) the syn/anti ratio and (ii) the OH proton shift of the syn rotamer. Reasonably concordant results are obtained from 298 to 323 K (3.6 and 3.9 M?1, respectively, at 298 K). Similar values are obtained from the syn OH proton shift variation for the 3,4‐methylenedioxythiophene (MDOT) derivative. Concentration‐dependent variation of the anti OH proton shift in the latter suggests that the anti isomer associates in the form of an open, singly hydrogen‐bonded dimer, with a much smaller association constant than the syn rotamer. Self‐association constants for 3‐pyridyl‐EDOT‐alkanols with smaller substituents vary by a factor of 4 from (i‐Pr)2 up to (CD3)2, while the hetero‐association constants for the same compounds with pyridine vary slightly less. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
The quasineutral presheath layer at the boundary of fully ionized, collisional, and magnetized plasma with an ambipolar flow to an adjacent absorbing wall was analyzed using a two fluid magneto‐hydrodynamic model. The plasma is magnetized by a uniform magnetic field B , imposed parallel to the wall. The analysis did not assume that the dependence of the particle density on the electric potential in the presheath is according to the Boltzmann equilibrium, and the dependence of the mean collision time τ on the varying plasma density within the presheath was not neglected. Based on the model equations, algebraic expressions were derived for the dependence of the plasma density, electron and ion velocities, and the electrostatic potential on the position within the presheath. The solutions of the model equations depended on two parameters: Hall parameter (β ), and the ratio (γ ), where γ = ZTe /(ZTe + Ti ), and Te , Ti and Z are the electron and ion temperatures and ionicity, respectively. The characteristic scale of the presheath extension is several times ri /β , where ri is the ion radius at the ion sound velocity. The electric potential could have a non monotonic distribution in the presheath. The ions are accelerated to the Bohm velocity (sound velocity) in the presheath mainly near the presheath‐sheath boundary, in a layer of thickness ~ri /β . The electric field accelerates the ions in the whole presheath if their velocity in the wall direction exceeds their thermal velocity. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
The gain saturation in the 46.9 nm line of the Ar+8 laser is analyzed using an atomic kinetics code. The dependence of the gain (G) on the electron kinetic temperature (Te) in the region (50 ‐150 eV) is calculated in the quasi steady‐state approximation for the different values of the electron density (Ne) and the plasma radius (rpl). The influence of radiat on trapping, ion random and mean velocities, Stark line broadening and refraction losses on the gain saturation is taken into consideration. For rpl = 150‐600 μm, the amplplication (G > 0 cm‐1) exists in the large temperature/density domain (Te = 60‐150 eV, Ne = 0.5‐10 × 1018 cm‐3). However, the value Gs ∼ 1.4 cm‐1 required for the gain saturation at the typical plasma length Lpl ∼ 15 cm is reached in the extremely narrow density regions at the high temperatures. The saturation is reached for rpl = 600 μm at Tse = 150 eV in the region Nse = 1.8‐2 × 1018 cm ‐3, for rpl = 300 μm at Tse = 125 eV and Nse = 2.5‐3 × 1018 cm‐3, and for rpl = 150 μm at Tse = 110 eV and Nse = 3‐4 × 1018 cm‐3. The broadest density region (Nse = 2 ‐8 × 1018 cm‐3) is predicted for the narrowest column (rpl = 150 μm) at the highest temperature (Tse = 150 eV). The operation in the broadest density region Nse, should make easier achievement of the gain saturation in the experiments.  相似文献   

12.
We calculate the quantum phase transition for a homogeneous Bose gas in the plane of s‐wave scattering length as and temperature T. This is done by improving a one‐loop result near the interaction‐free Bose‐Einstein critical temperature Tc(0) with the help of recent high‐loop results on the shift of the critical temperature due to a weak atomic repulsion based on variational perturbation theory. The quantum phase diagram shows a nose above Tc(0), so that we predict the existence of a reentrant transition above Tc(0), where an increasing repulsion leads to the formation of a condensate.  相似文献   

13.
The stabilities of amorphous indium‐zinc‐oxide (IZO) thin film transistors (TFTs) with back‐channel‐etch (BCE) structure are investigated. A molybdenum (Mo) source/drain electrode was deposited on an IZO layer and patterned by hydrogen peroxide (H2O2)‐based etchants. Then, after etching the Mo layer, SF6 plasma with direct plasma mode was employed and optimized to improve the bias stress stability. Scanning electron microscopy and X‐ray photoelectron spectroscopic analysis revealed that the etching residues were removed efficiently by the plasma treatment. The modified BCE‐ TFTs showed only threshold voltage shifts of 0.25 V and –0.20 V under positive/negative bias thermal stress (P/NBTS, VGS = ±30 V, VDS = 0 V and T = 60 °C) after 12 hours, respectively. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
The on‐shell self‐energy of the homogeneous electron gas in second order of exchange, Σ2x = Re Σ2x (kF, k2 F/2), is given by a certain integral. This integral is treated here in a similar way as Onsager, Mittag, and Stephen [Ann. Physik (Leipzig) 18 , 71 (1966)] have obtained their famous analytical expression e2x = (in atomic units) for the correlation energy in second order of exchange. Here it is shown that the result for the corresponding on‐shell self‐energy is Σ2x = e2x. The off‐shell self‐energy Σ2x (k, o) correctly yields 2e2x (the potential component of e2x) through the Galitskii‐Migdal formula. The quantities e2x and Σ2x appear in the high‐density limit of the Hugenholtz‐van Hove (Luttinger‐Ward) theorem.  相似文献   

15.
The facile hydrothermal synthesis of polyethyleneimine (PEI)‐coated iron oxide (Fe3O4) nanoparticles (NPs) doped with Gd(OH)3 (Fe3O4‐Gd(OH)3‐PEI NPs) for dual mode T1‐ and T2‐weighted magnetic resonance (MR) imaging applications is reported. In this approach, Fe3O4‐Gd(OH)3‐PEI NPs are synthesized via a hydrothermal method in the presence of branched PEI and Gd(III) ions. The PEI coating onto the particle surfaces enables further modification of poly(ethylene glycol) (PEG) in order to render the particles with good water dispersibility and improved biocompatibility. The formed Fe3O4‐Gd(OH)3‐PEI‐PEG NPs have a Gd/Fe molar ratio of 0.25:1 and a mean particle size of 14.4 nm and display a relatively high r2 (151.37 × 10?3m ?1 s?1) and r1 (5.63 × 10?3m ?1 s?1) relaxivity, affording their uses as a unique contrast agent for T1‐ and T2‐weighted MR imaging of rat livers after mesenteric vein injection of the particles and the mouse liver after intravenous injection of the particles, respectively. The developed Fe3O4‐Gd(OH)3‐PEI‐PEG NPs may hold great promise to be used as a contrast agent for dual mode T1‐ and T2‐weighted self‐confirmation MR imaging of different biological systems.  相似文献   

16.
Kinetic theory has been applied to study the damping characteristics of dust ion acoustic waves (DIAWs) in a dusty plasma comprising q‐non‐extensive distributed electrons and ions, while the dust particles are considered extensive following the Maxwellian velocity distribution function. It is found that the results of the three‐dimensional velocity distribution function are more accurate compared to the results of the one‐dimensional velocity distribution function. The numerical solution of the dispersion relation is carried out to study the effect of the non‐extensivity parameter q on the dispersion, the damping rate, and the range of the values of the normalized wavenumber ( k λD) for which the DIAWs are weakly damped. It is found that the change in the value of the electron non‐extensivity parameter qe has a minor effect on the dispersion, the damping rate, and the range of the values of the normalized wavenumber ( k λD) for which the DIAWs are weakly damped, while on the other hand, ion non‐extensivity parameter qi has a strong effect on these arguments. The effect of other parameters, such as the ratio of electron to ion number density and ratio of electron to ion temperature, on the damping characteristics of DIAWs is also highlighted.  相似文献   

17.
The resonant scattering and diffraction beamline P09 at PETRA III at DESY is equipped with a 14 T vertical field split‐pair magnet. A helium‐3 refrigerator is available that can be fitted inside the magnet's variable‐temperature insert. Here the results of a series of experiments aimed at determining the beam conditions permitting operations with the He‐3 insert are presented. By measuring the tetragonal‐to‐orthorhombic phase transition occurring at 2.1 K in the Jahn–Teller compound TmVO4, it is found that the photon flux at P09 must be attenuated down to 1.5 × 109 photons s?1 for the sample to remain at temperatures below 800 mK. Despite such a reduction of the incident flux and the subsequent use of a Cu(111) analyzer, the resonant X‐ray magnetic scattering signal at the Tm LIII absorption edge associated with the spin‐density wave in TmNi2B2C below 1.5 K is intense enough to permit a complete study in magnetic field and at sub‐Kelvin temperatures to be carried out.  相似文献   

18.
The present paper describes a spectroscopic method or determining electron temperature Te and density Ne in an argon plasma jet on the basis of a Collisional‐Radiative model of argon. Electron temperature and density in the argon plasma were measured by the method developed, and comparison of them was discussed with those obtained with a Langmuir probe. The results or Te and Ne obtained by the spectroscopic method agreed roughly with those by the probe.  相似文献   

19.
In this study, the properties of ion‐ and positron‐acoustic solitons are investigated in a magnetized multi‐component plasma system consisting of warm fluid ions, warm fluid positrons, q‐non‐extensive distributed positrons, q‐non‐extensive distributed electrons, and immobile dust particles. To drive the Korteweg–de Vries (KdV) equation, the reductive perturbation method is used. The effects of the ratio of the density of positrons to ions, the temperature of the positrons, and ions to electrons, the non‐extensivity parameters qe and qp , and the angle of the propagation of the wave with the magnetic field on the potential of ion‐ and positron‐acoustic solitons are also studied. The present investigation is applicable to solitons in fusion plasmas in the edge of tokamak.  相似文献   

20.
The gas‐phase elimination kinetics of the title compounds were carried out in a static reaction system and seasoned with allyl bromide. The working temperature and pressure ranges were 200–280 °C and 22–201.5 Torr, respectively. The reactions are homogeneous, unimolecular, and follow a first‐order rate law. These substrates produce isobutene and corresponding carbamic acid in the rate‐determining step. The unstable carbamic acid intermediate rapidly decarboxylates through a four‐membered cyclic transition state (TS) to give the corresponding organic nitrogen compound. The temperature dependence of the rate coefficients is expressed by the following Arrhenius equations: for tert‐butyl carbamate logk1 (s?1) = (13.02 ± 0.46) – (161.6 ± 4.7) kJ/mol(2.303 RT)?1, for tert‐butyl N‐hydroxycarbamate logk1 (s?1) = (12.52 ± 0.11) – (147.8 ± 1.1) kJ/mol(2.303 RT)?1, and for 1‐(tert‐butoxycarbonyl)‐imidazole logk1 (s?1) = (11.63 ± 0.21)–(134.9 ± 2.0) kJ/mol(2.303 RT)?1. Theoretical studies of these elimination were performed at Møller–Plesset MP2/6‐31G and DFT B3LYP/6‐31G(d), B3LYP/6‐31G(d,p) levels of theory. The calculated bond orders, NBO charges, and synchronicity (Sy) indicate that these reactions are concerted, slightly asynchronous, and proceed through a six‐membered cyclic TS type. Results for estimated kinetic and thermodynamic parameters are discussed in terms of the proposed reaction mechanism and TS structure. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号