首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This work focuses on a theoretical investigation of the shape and equilibrium height of a magnetic liquid–liquid interface formed between two vertical flat plates in response to vertical magnetic fields. The formulation is based on an extension of the so called Young–Laplace equation for an incompressible magnetic fluid forming a two-dimensional free interface. A first order dependence of the fluid susceptibility with respect to the magnetic field is considered. The formulation results in a hydrodynamic-magnetic coupled problem governed by a nonlinear second order differential equation that describes the liquid–liquid meniscus shape. According to this formulation, five relevant physical parameters are revealed in this fluid static problem. The standard gravitational Bond number, the contact angle and three new parameters related to magnetic effects in the present study: the magnetic Bond number, the magnetic susceptibility and its derivative with respect to the field. The nonlinear governing equation is integrated numerically using a fourth order Runge-Kutta method with a Newton–Raphson scheme, in order to accelerate the convergence of the solution. The influence of the relevant parameters on the rise and shape of the liquid–liquid interface is examined. The interface shape response in the presence of a magnetic field varying with characteristic wavenumbers is also explored. The numerical results are compared with asymptotic predictions also derived here for small values of the magnetic Bond number and constant susceptibility. A very good agreement is observed. In addition, all the parameters are varied in order to understand how the scales influence the meniscus shape. Finally, we discuss how to control the shape of the meniscus by applying a magnetic field.  相似文献   

2.
The aim of this study is to investigate the effect of a uniform transverse electric field on the steady-state behavior of a liquid cylinder surrounded by another liquid of infinite extent. The governing electrohydrodynamic equations are solved for Newtonian and immiscible fluids in the framework of leaky-dielectric theory and in the limit of small electric field and fluid inertia. A detailed analysis of the electrical and hydrodynamic stresses acting on the interface separating the two fluids is presented, and an expression is found for the interface deformation for small distortions from a circular shape. The electrical stresses acting on the interface of two leaky-dielectric liquids are compared with those acting on an interface separating a perfect dielectric or infinitely conducting core fluid cylinder from a surrounding perfect dielectric fluid. A comparison is made between the results of this study and those of a similar study for fluids with permeable interfaces and the classical results for liquid drops.  相似文献   

3.
韩明杰  彭志龙  姚寅  张博  陈少华 《力学学报》2021,53(6):1609-1621
界面黏附和脱黏的可调控在攀爬装置、黏附开关、机械抓手等方面具有重要的应用需求. 针对磁敏感薄膜-基底界面, 开展了薄膜初始曲率及外加磁场对界面黏附性能影响机制的研究. 首先实验制备了具有初始曲率的磁敏感薄膜, 分别开展了具有初始曲率的磁敏感薄膜-基底界面撕脱实验及理论研究, 研究了薄膜初始曲率、弯曲刚度和外加磁场强度对界面黏附性能的影响规律. 实验和理论结果一致表明: 具有初始曲率的磁敏感薄膜-基底界面黏附力随薄膜初始曲率的增大而减小, 而外加磁场能够有效提高界面黏附力;相比于初始零曲率薄膜-基底界面稳态撕脱力与薄膜弯曲刚度无关, 薄膜弯曲刚度减弱了具有初始曲率薄膜-基底界面的稳态撕脱力. 进一步从能量角度分析了界面等效黏附性能, 揭示了薄膜弯曲能、磁场势能、界面黏附能的相互竞争机制. 最后, 基于本文的实验及理论结果, 提出了一种磁场和薄膜初始曲率协同调控的简易机械抓手, 可连续实现物体的拾取、搬运和释放功能. 本文结果不仅有助于理解多场调控的界面可逆黏附机制, 对界面黏附可控的功能器件设计亦提供了一种新方法.   相似文献   

4.
A mathematical model of wave propagation and instability on a charged surface of an infinite cylindrical column of a conducting fluid, surrounding a coaxial infinite porous core, is formulated and studied. The conditions are found under which the disturbances of the liquid column become unstable and result in its fragmentation into a chain of connected droplets. It is shown that the length of the droplets decreases with increase in the electric field.  相似文献   

5.
Li  Mingjun  Zhu  Li 《应用数学和力学(英文版)》2021,42(8):1171-1182
This study is to numerically test the interfacial instability of ferrofluid flow under the presence of a vacuum magnetic field. The ferrofluid parabolized stability equations(PSEs) are derived from the ferrofluid stability equations and the Rosensweig equations, and the characteristic values of the ferrofluid PSEs are given to describe the ellipticity of ferrofluid flow. Three numerical models representing specific cases considering with/without a vacuum magnetic field or viscosity are created to mathematically examine the interfacial instability by the computation of characteristic values. Numerical investigation shows strong dependence of the basic characteristic of ferrofluid Rayleigh-Taylor instability(RTI) on viscosity of ferrofluid and independence of the vacuum magnetic field.For the shock wave striking helium bubble, the magnetic field is not able to trigger the symmetry breaking of bubble but change the speed of the bubble movement. In the process of droplet formation from a submerged orifice, the collision between the droplet and the liquid surface causes symmetry breaking. Both the viscosity and the magnetic field exacerbate symmetry breaking. The computational results agree with the published experimental results.  相似文献   

6.
The structure of a flat interphase boundary between a magnetic suspension and a conventional immiscible fluid is investigated within the framework of the model of a three-component medium taking the dependence of the free energy of the system on the concentration gradients into account. It is shown that for certain values of the constitutive parameters the bulk magnetic particle concentration increases significantly inside the interfacial layer, i.e., the particles are significantly adsorbed on the interface. The dependence of the surface tension on the magnetic field strength is determined. It is shown that for certain problem parameters this dependence qualitatively corresponds to that obtained experimentally and described in the phenomenological theory developed by Golubyatnikov and Subkhankulov in 1986. In the case of strong particle adsorption the dependence of the surface tension on the magnetic particle concentration on the phase interface is significantly nonlinear. A refined model of the interface as a two-dimensional continuum with surface magnetization is constructed. Constitutive equations, conditions on the interface, and necessary stability conditions are obtained.  相似文献   

7.
Several theoretical [1–3] and experimental [4] studies have been made of the diamagnetic perturbations during expansion of a conducting material in a magnetic field. These studies have related either to superconducting media [1], or to a strong magnetic field which has a considerable effect on the motion of the medium [2], or to a weakly ionized media, in which the effects of field variation in the medium can be neglected [3]. In the following we examine the expansion of a substance with finite conductivity in a weak (having no effect on the motion of the medium) magnetic field with account for the effects of field attenuation within the expanding matter. This occurs in the diagnostics of the state of the matter of a spark at a laser focus on the basis of diamagnetic induction signals [4]. The relations obtained in the following appear to be applicable for estimating the diamagnetic properties of meteor trails.The method of solution of this problem may be of some interest; therefore, in the following the solution is obtained by several techniques for different basic geometries.  相似文献   

8.
The area-averaged two-fluid model formulation of a separated two-phase flow system is used to investigate interfacial stability of liquid film flows. The analysis takes into account the effects of phase change at the interface as well as the dynamic effects of the adjacent vapor flow on the interfacial stability. Wave formation and instability criteria are established in terms of the generalized fluid and flow parameters. The criteria are applied to investigate the stability of laminar liquid film flow with interfacial shear and phase change. The influence of various dimensionless parameters characterizing film thickness, gravity, phase change and interfacial shear are studied with respect to the neutral stability, temporal growth factor and the wave propagation velocity. The results of the present study indicate that the interfacial stability analysis developed within the frame of the two-fluid model formulation proves to be quite accurate as judged by comparing its results with the available experimental data and with the results of much longer and more complex analytical investigations which are valid only for the liquid film free of interfacial shear.  相似文献   

9.
The flow of paramagnetic fluid inside a cylinder placed in a bore of a superconducting magnet was studied experimentally. Single-phase closed thermosyphon configuration was employed. The lower side wall of the cylindrical enclosure was heated while the upper side wall was cooled with the thin adiabatic interface in between. The experiment was carried out with an aqueous solution of glycerol. The magnetic susceptibility of the working fluid was increased by adding Gd(NO3)3 × 6H2O and was measured by a magnetic susceptibility balance. The encapsulated liquid crystal slurry (KWN-2025, Japan Capsular Product Inc.) dispersed in the working fluid was illuminated in the middle height horizontal cross-section of the enclosure to visualize the temperature field. The color images of flow mode were taken by a digital camera. The average heat transfer rates were also measured. Depending on the Rayleigh number, different spoke patterns were observed. The number of angular structures (spokes) increased with increase not only in the Rayleigh number but also in the strength of magnetic field. The heated fluid was repelled by the magnetic field, while the cooled fluid was attracted. The magnetic field enhanced the heat transfer rate.  相似文献   

10.
The two-dimensional problem of the shape of the free surface of a magnetic fluid in a gravity field, a uniform external magnetic field and the nonuniform field of a magnetized metal wedge is considered. The results of numerically calculating the shape of the free surface of a magnetic liquid drop retained on an inclined plane by the field of a magnetizing wedge are presented. The changes in the shape of the free surface of an infinite volume of magnetic liquid near the edge of a wedge with increase in the external field are investigated. It is shown that for a certain critical field some of the magnetic liquid separates and adheres to the edge of the wedge. Experimental data on the determination of the maximum cross-sectional area of a drop retained by the magnetic field of a wedge and the critical rise of the magnetic liquid relative to the level outside the field are presented. The experimental and theoretical results are in agreement.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.4, pp. 113–119, July–August, 1992.The authors wish to thank V. V. Gogosov for useful discussions and his interest in the work.  相似文献   

11.
We present the effect of a magnetic field on three-dimensional fluid flow and heat transfer during solidification from a melt in a cubic enclosure. The walls of the enclosure are considered perfectly electrically conducting and the magnetic field is applied separately in three directions. The finite-volume method with enthalpy formulation is used to solve the mathematical model in the solid and liquid phases. The results obtained by our computer code are compared with the numerical and experimental data found in the literature. For Gr = 5 × 105 and Ha = 0, 25, 50, 75, and 100 (where Gr and Ha are the Grashof and Hartmann numbers, respectively), the effects of magnetic field on flow and thermal fields, and on solid/liquid interface shape are presented and discussed. The interface is localized with and without magnetic field. The results show a strong dependence between the interface shape and the intensity and orientation of magnetic field. When the magnetic field is applied along the X-direction, the magnetic stability diagrams (VmaxHa) and (NuavgHa) show the strongest stabilization of the flow field and heat transfer.  相似文献   

12.
The effects of magnetic field on the microgravity combustion characteristics of a single methanol droplet in homogeneous flow are numerically investigated to develop an effective magnetic control method for microgravity droplet combustion and spray combustion systems. First, governing equations of microgravity single methanol droplet combustion under a homogeneous magnetic field based on an unsteady two-dimensional, spherically symmetric model including single-step chemistry are presented. Employing numerical modeling, several combustion behaviors are calculated taking into account the effect of the unsteady magnetic field profiles at the flame front. It is found that the flame front becomes deformed and is elongated in the direction of the magnetic field due to the inhomogeneous magnetic pressure distribution at the interface between the fuel vapor phase and the oxidizer phase. This nonuniformity of magnetic pressure is caused by the transient deformation of the magnetic field with refraction of magnetic flux at the flame front due to the difference of magnetic susceptibility between the diamagnetic fuel vapor phase and the paramagnetic oxidizer phase.  相似文献   

13.
A study is made of the influence of a homogeneous magnetic field on the mass transfer for a spherical solid particle and a liquid drop in a flow of a viscous electrically conducting fluid. The previously obtained [1] velocity field of the fluid is used to calculate the concentration distribution in the diffusion boundary layer, the density of the diffusion flux, and the Nusselt number, which characterizes the mass transfer between the particle and the surrounding medium.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 189–192, January–February, 1980.  相似文献   

14.
The present paper introduces a new numerical method for predicting the characteristics of thermocapillary turbulent convection in a differentially-heated rectangular cavity with two superposed and immiscible fluid layers. The unsteady Reynolds form of the Navier–Stokes equations and energy equation are solved by using the control volume approach on a staggered grid system using SIMPLE algorithm. The turbulence quantities are predicted by applying the standard kε turbulence model. The level set formulation is applied for predicting the topological changes of the interface separating the two fluid layers and to provide an accurate and robust modeling of the interfacial normal and tangential stresses. The computational results obtained showed good agreement when compared with the previous experimental, numerical and analytical benchmark data for different validation cases in both laminar and turbulent regimes. The present numerical method is then applied to predict the velocity and temperature distribution in two immiscible liquid layers with undeformable interface for a wide range of Marangoni numbers. The laminar-turbulent transition is demonstrated by obtaining the turbulence features at high interfacial temperature gradient which is characterized by high Marangoni number. The effect of increasing Marangoni number on the interface dynamics in turbulent regime is also investigated.  相似文献   

15.
In this research, the co-axial coalescence of a pair of gas bubbles rising in a viscous liquid column under the effects of an external uniform magnetic field is simulated numerically. Considered fluids are dielectric, and applied magnetic field is uniform. Effects of different strengths of magnetic field on the interaction of in-line rising bubbles and coalescence between them were investigated. For numerical modeling of the problem, a computer code was developed to solve the governing equations which are continuity, Navier–Stokes equation, magnetic field equation and level set and reinitialization of level set equations. The finite volume method is used for the discretization of the continuity and momentum equations using SIMPLE scheme where the finite difference method is used to discretization of the magnetic field equations. Also a level set method is used to capture the interface of two phases. The results are compared with available numerical and experimental results in the case of no-magnetic field effect which show a good agreement. It is found that uniform magnetic field accelerates the coalescence of the bubbles in dielectric fluids and enhances the rise velocity of the coalesced bubble.  相似文献   

16.
The present paper introduces a new numerical method for predicting the characteristics of thermocapillary turbulent convection in a differentially-heated rectangular cavity with two superposed and immiscible fluid layers. The unsteady Reynolds form of the Navier–Stokes equations and energy equation are solved by using the control volume approach on a staggered grid system using SIMPLE algorithm. The turbulence quantities are predicted by applying the standard kε turbulence model. The level set formulation is applied for predicting the topological changes of the interface separating the two fluid layers and to provide an accurate and robust modeling of the interfacial normal and tangential stresses. The computational results obtained showed good agreement when compared with the previous experimental, numerical and analytical benchmark data for different validation cases in both laminar and turbulent regimes. The present numerical method is then applied to predict the velocity and temperature distribution in two immiscible liquid layers with undeformable interface for a wide range of Marangoni numbers. The laminar-turbulent transition is demonstrated by obtaining the turbulence features at high interfacial temperature gradient which is characterized by high Marangoni number. The effect of increasing Marangoni number on the interface dynamics in turbulent regime is also investigated.  相似文献   

17.
We model the hydrodynamics of a shear cell experiment with an immiscible nematic liquid crystal droplet in a viscous fluid using an energetic variational approach and phase-field methods [86]. The model includes the coupled system for the flow field for each phase, a phase-field function for the diffuse interface and the orientational director field of the liquid crystal phase. An efficient numerical scheme is implemented for the two-dimensional evolution of the shear cell experiment for this initial data. The same model reduces to an immiscible viscous droplet in a viscous fluid, which we simulate first to compare with other numerical and experimental behavior. Then we simulate drop deformation by varying capillary number (independent of liquid crystal physics), liquid crystal interfacial anchoring energy and Oseen–Frank distortional elastic energy. We show the number of eventual droplets (one to several) and “beads on a string” behavior are tunable with these three physical parameters. All stable droplets possess signature quadrupolar shear and normal stress distributions. The liquid crystal droplets always possess a global surface defect structure, called a boojum, when tangential surface anchoring is imposed. Boojums [79], [32] consist of degree +1/2 and ?1/2 surface defects within a bipolar global orientational structure.  相似文献   

18.
A computational tool based on the ghost fluid method (GFM) is developed to study supersonic liquid jets involving strong shocks and contact discontinuities with high density ratios. The solver utilizes constrained reinitialization method and is capable of switching between the exact and approximate Riemann solvers to increase the robustness. The numerical methodology is validated through several benchmark test problems; these include one-dimensional multiphase shock tube problem, shock–bubble interaction, air cavity collapse in water, and underwater-explosion. A comparison between our results and numerical and experimental observations indicate that the developed solver performs well investigating these problems. The code is then used to simulate the emergence of a supersonic liquid jet into a quiescent gaseous medium, which is the very first time to be studied by a ghost fluid method. The results of simulations are in good agreement with the experimental investigations. Also some of the famous flow characteristics, like the propagation of pressure-waves from the liquid jet interface and dependence of the Mach cone structure on the inlet Mach number, are reproduced numerically. The numerical simulations conducted here suggest that the ghost fluid method is an affordable and reliable scheme to study complicated interfacial evolutions in complex multiphase systems such as supersonic liquid jets.  相似文献   

19.
The effect of micron-sized hydrophobic calcium carbonate particles on the stabilization of polydimethylsiloxane (PDMS)/polyisobutylene (PIB) immiscible model blends is investigated in this study. The analytical splitting of bulk and liquid–liquid interface contributions from the droplet bridging one is successfully performed due to the negligible contribution of hydrophobic microparticles to the bulk rheology of phases. The presence of particles at the fluid–fluid interface is supported by wetting parameter calculation and verified by optical microscopy observations. Moreover, direct visualizations shows that particles are able to form clusters of droplets by simultaneously adsorbing at two fluid–fluid interfaces and glue-dispersed droplets together, probably due to the patchy interactions induced by heterogeneous distribution of particles along the interface. Rheological studies show that the flow-induced coalescence is slowed down upon addition of particles and almost suppressed with the addition of 4 wt% particles. The linear viscoelastic response is modeled to estimate interfacial tension by considering the contribution of particle-induced droplet aggregation in addition to bulk and droplet deformation ones. From linear and nonlinear viscoelastic responses, the improved stability of filled polymer blends is attributed to the interfacial rheology and/or the bridged structure of droplets, even though the interfacial area is not fully covered by particles. Furthermore, Doi–Ohta scaling relations are investigated by employing stress growth response upon step-up of shear flow.  相似文献   

20.
The process of quenching cylindrical steel specimens in a magnetic fluid in the presence of a magnetic field is investigated. It is shown that depending on the strength of the magnetic field and its orientation with respect to the surface of the cylinder, local vapor formations that result in nonuniform cooling may appear on the surface and that the boiling of the fluid on the surface may take place in different regimes. The processes of formation of local vapor films were experimentally modeled by observing the shape of the surface of the magnetic fluid surrounding a cylinder placed between the poles of an electromagnet. An equation describing the shape of the free surface of the magnetic fluid and the evolution of the air pockets with variation of the volume of magnetic fluid and the strength of the magnetic field is derived. The surface shape of the magnetic fluid calculated from the theory proposed is shown to be in good agreement with the experimental data.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 3–11, March–April, 1989.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号