首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three-dimensional transient numerical simulations were carried out to investigate the melt convection and temperature fluctuations within an industrial Czochralski crucible. To study the magnetic damping effects on the growth process, a vertical magnetic field and a cusp magnetic field were considered. Due to our special interest in the melt convection, only local simulation was conducted. The melt flow was calculated by large-eddy simulation (LES) and the magnetic forces were implemented in the CFD code by solving a set of user-defined scalar (UDS) functions. In the absence of magnetic fields, the numerical results show that the buoyant plumes rise from the crucible to the free surface and the crystal–melt interface, which indicates that the heat and mass transfer phenomena in Si melt can be characterized by the turbulent flow patterns. In the presence of a vertical magnetic field, the temperature fluctuations in the melt are significantly damped, with the buoyant plumes forming regular cylindrical geometries. The cusp magnetic field could also markedly reduce the temperature fluctuations, but the buoyant plumes would break into smaller vortical structures, which gather around the crystal as well as in the center of the crucible bottom. With the present crucible configurations, it is found that the vertical magnetic field with an intensity of 128 mT can damp the temperature fluctuations more effectively than the 40 mT cusp magnetic field, especially in the region near the growing crystal.  相似文献   

2.
阐述了CVT(化学气相输运)法生长GaP的基本反应和输运速度,采用CVT法生长出了GaP多晶.设计了石英管的结构以制造出一个局部的低温区域,防止了GaP在管壁的生长.生长出的GaP多晶相对密度为98;,红外透过率达到30;,努普硬度为611kg/mm2.散射颗粒测试表明主要的光散射颗粒为多晶中存在的孔隙.  相似文献   

3.
采用计算流体力学软件Fluent对HVPE反应室进行了数值模拟,研究了GaCl载气流量对HVPE反应室气流分布的影响,发现GaCl载气流量是影响GaCl和NH3在衬底上均匀分布的重要因素.采用HVPE方法在不同GaCl载气流量下生长GaN单晶,研究了GaCl载气流量对GaN单晶质量的影响,得到了与模拟一致的结果.  相似文献   

4.
考虑包括热辐射在内的质量传递、动量传递、热量传递三维模型,利用流体力学计算软件,对18对棒西门子多晶硅CVD还原炉实际情况进行数值模拟.考察了两种进气方式下还原炉内的流场和温度场分布.计算结果表明,为了实现硅棒均匀沉积,与底盘上分散进气、中心集中出气的还原炉结构相比,中心集中进气、中环与外环之间分散出气的流场及温度场分布更为合理.后者可能有效避免气体在进出口间的“短路”现象,又使炉内各处温度分布更为均匀,减小硅棒不均匀生长现象.模拟结果还表明,采用典型工况的数据,还原炉中总能量损失占能量输入的78.9;,辐射热损失占总能量损失的70.9;,产品单位质量能耗为72.8 kWh/·kg-1,与很多其他研究结果及实际相一致.  相似文献   

5.
For the seeding process of oxide Czochralski crystal growth, influence of the crucible bottom shape on the heat generation, temperature and flow field of the system and the seed‐melt interface shape have been studied numerically using the finite element method. The configuration usually used in a real Czochralski crystal growth process consists of a crucible, active afterheater, induction coil with two parts, insulation, melt, gas and seed crystal. At first, the volumetric distribution of heat inside the metal crucible and afterheater inducted by the RF‐coil was calculated. Using this heat generation in the crucible wall as a source the fluid flow and temperature field of the entire system as well as the seed‐melt interface shape were determined. We have considered two cases, flat and rounded crucible bottom shape. It was observed that using a crucible with a rounded bottom has several advantages such as: (i) The position of the heat generation maximum at the crucible side wall moves upwards, compared to the flat bottom shape. (ii) The location of the temperature maximum at the crucible side wall rises and as a result the temperature gradient along the melt surface increases. (iii) The streamlines of the melt flow are parallel to the crucible bottom and have a curved shape which is similar to the rounded bottom shape. These important features lead to increasing thermal convection in the system and influence the velocity field in the melt and gas domain which help preventing some serious growth problems such as spiral growth. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
This paper reports the first attempt of the Pt-catalyst-assisted MOVPE growth of InN. In order to enhance NH3 decomposition at a relatively low growth temperature (~550 °C), Pt is used as a catalyst. The catalyst is installed in the NH3 introduction tube in the MOVPE reactor and the tube is located just above the susceptor to be heated. Compared with InN films grown without the catalyst, the samples grown with Pt catalyst show improved electrical properties; a carrier concentration in the order of 1018 cm?3 and a Hall mobility as high as 1350 cm2/Vs are obtained. The crystalline quality is also improved by employing the catalyst and a tilt fluctuation as low as 8.6 arcmin is obtained for a sample grown on a GaN/sapphire template. It is confirmed that for InN films grown at 550 °C with Pt catalyst, the electrical and crystallographic properties are also improved with increase in thickness. These results indicate that the growth at around 550 °C with the Pt catalyst is performed under the circumstances where NH3 is effectively decomposed, whereas the deterioration of InN during growth is significantly suppressed.  相似文献   

7.
We have investigated the influence of the TEGa flow on the optical and structural properties of InGaN/GaN multiple quantum wells (MQWs) with an indium composition around 20%. The samples with five-pairs InGaN/GaN MQWs were grown on sapphire substrates by metalorganic chemical vapor deposition. Photoluminescence spectra at 8 K showed that the MQWs grown with a low amount of TEGa flow gave a strong single peak and a higher emission energy. High-resolution X-ray diffraction measurements showed a deterioration of the InGaN/GaN interfaces in the sample grown with the large TEGa flow. The luminescence thermal quenching characteristics suggested that more structural defects acting as non-radiative recombination centers formed in the MQWs when the TEGa flow increased. The results indicate that decreasing the TEGa flow help to build up a new growth balance during the growth of InGaN wells, leading to less structural defects, more homogeneous indium distribution and the abrupt MQWs interfaces.  相似文献   

8.
Single crystal layers of ZnS about 100 μm thick were grown epitaxially on GaP substrates in an open tube system using source ZnS powder and a flowing hydrogen atmosphere. The growth rate for different substrate temperatures increases with increasing hydrogen flow rate, but the growth rate profiles resemble each other in shape. The profile shifts towards the low temperature side as the source temperature is decreased. The (111)B substrate orientation is found to be preferable to the (111)A or the (100) with respect to surface morphology and crystal quality. X-ray diffraction investigations and luminescent properties show that the (111)B grown layers are of high quality. All ZnS layers grown on GaP substrates are craked on cooling, which may be due to the thermal expansion mismatch between the layer and the substrate. Heat-treatment of the grown layer does not reduce the resistivity, but increases the photoluminescence intensity markedly. Selective vapour-phase epitaxial growth has been successfully applied resulting in crack-free ZnS layers on GaP substrates.  相似文献   

9.
AlN layers with a thickness of 250 nm were grown by plasma-assisted gas source molecular-beam epitaxy on Si(111) at substrate temperatures between 600 °C and 900 °C. The surface morphology and microstructure of the AlN layers were analyzed by scanning and transmission electron microscopy. Different defect types are observed in the AlN layers and at the AlN/Si(111) interfaces as a function of the temperature: inclusions of pure Al in the Si-substrate, crystallites of the cubic AlN phase, dislocations, stacking faults and inversion domain boundaries. The formation and concentration of the defects depends strongly on the substrate temperature during the growth. X-ray diffraction rocking curves for the (0002) reflection yield minimum full width at half maximum values for the sample grown at the 900 °C under Al-rich conditions indicating optimum structural quality. However, the discussion of the entity of defects will show that a more differentiated view is required to assess the overall quality of the AlN layers.  相似文献   

10.
利用直流等离子体喷射化学气相沉积法制备掺氮的金刚石厚膜.本文研究了在甲烷/氩气/氢气中加入氮气对金刚石膜生长、形貌和质量的影响.反应气体的比例由质量流量计控制,在固定氢气(5000sccm)、氩气(3000sccm)、甲烷(100sccm)流量的情况下改变氮气的流量,即反应气体中氮原子和碳原子的变化比例(N/ C比)范围是从0.06到0.68.同时金刚石膜在固定的腔体压力(4kPa)和衬底温度(800℃)下生长.金刚石膜用扫描电镜(SEM)、拉曼谱和X射线衍射表征.结果表明,氮气在反应气体中的大量加入对直流等离子体喷射制备金刚石膜的形貌、生长速率、晶体取向、成核密度等有非常显著的影响.  相似文献   

11.
The effects of the argon gas flow rate and furnace pressure on the oxygen concentration in a transverse magnetic field applied Czochralski (TMCZ) silicon single crystals were examined through experimental crystal growth. A gas controller which had been proposed by Zulehner was used for this series of experiments. In the TMCZ gas-controlled crystals, a decrease in the oxygen concentration with a decrease in furnace pressure was found. A clear relationship between the oxygen concentration and the argon gas flow rate was not obtained due to the limited experimental conditions. The relationships between the oxygen concentration and the furnace pressure and the argon gas flow rate previously observed for Czochralski (CZ) crystals by a similar gas controller were confirmed by the present gas controller. The oxygen concentration changes in the TMCZ and the CZ crystals were analyzed in terms of the calculated flow velocity of the argon gas between the gas controller and the silicon melt surface. In contrast with the CZ gas-controlled crystals, the oxygen concentration was decreased with an increase in the flow velocity of argon gas in the TMCZ gas-controlled crystals. The surface temperature model and the melt flow pattern model which had been proposed in the previous report are discussed again in light of the present experimental results.  相似文献   

12.
《Journal of Crystal Growth》2006,286(2):413-423
Crystal growth rate depends on both diffusion and surface reaction. In industrial crystallizers, there exist conditions for diffusion-controlled growth and surface reaction-controlled growth. Using mathematical modelling and experimental information obtained from growth studies of single crystals, it is possible to separate these phenomena and study how they are affected by concentration, slip velocities of particles, temperature and finally estimate the parameters for crystal growth models.In this study, a power-law growth model using activity-based driving force is created. Computational fluid dynamics (CFD) was used to evaluate the thickness of a diffusion layer around the crystal. Parameters of the crystal growth model were estimated using a non-linear optimization package KINFIT. Experimental data on growth rate of the (1 0 1) face of a potassium dihydrogen phosphate (KDP) single crystal and simulated data on the thickness of a diffusion layer at the same crystal face were used in parameter estimation. The new surface reaction model was implemented into the CFD code. The model was used to study the effect of flow direction on growth rate of the whole crystal with various slip velocities and solute concentrations.The developed method itself is valid in general but the parameters of crystal growth model are dependent on the system. In this study, the model parameters were estimated and verified for KDP crystal growth from binary water solution.  相似文献   

13.
A systematic study of the crystallographic and electrical/optical properties of MOVPE-grown InN was performed, and the factors that restrict the quality of MOVPE InN were elucidated. The quality of grown InN is highly dependant on the thermal decomposition of NH3 as a nitrogen source. At a lower growth temperature (~550 °C) a shortage of active nitrogen, due to a lower decomposition rate of NH3, causes the formation of N vacancies in the grown InN. With increasing growth temperature, a more stoichiometric crystal is grown and the electrical/optical properties improve. At temperatures above 600 °C, however, deterioration occurs at the N-face of In-polar InN near the substrate interface. This deterioration results in the formation of a porous layer during high temperature (~650 °C) growth. There are a few evidences that show that the hydrogen produced by NH3 decomposition causes this degradation. Thus, improving the quality of MOVPE-grown InN by changing the growth temperature can be difficult. However, a short growth time at a high growth rate and a relatively high temperature is one effective way to solve this dilemma, and one can achieve carrier concentrations as low as 4×1018 cm−3 by growth at 650 °C for 30 min.  相似文献   

14.
Single crystals of β-type Ti alloy system Ti–Nb–Ta–Zr–O have been grown successfully in an Ar gas flow by a floating zone method. The growth orientations were determined approximately by using seed crystals with the desired orientations. The various growth conditions were realized by choosing the gas purity, the gas flow rate, and the growth rate as variables. Composition analysis of the grown crystals was done to check any variation from the values of the raw material along with the bulk homogeneity, followed by measurements of the lattice parameter and the hardness, which provides the following results: (1) the composition of oxygen varies with respect to the flow rate, or is increased as the purity is degraded, (2) the lattice parameter is increased with increasing composition of oxygen, (3) which is also the case with the hardness. Measurements of Young's moduli were performed to investigate the elastic properties. The results indicate that the crystals exhibit the anisotropy which was expected previously. The elastic constants were estimated from the moduli, giving the ideal stress 1.7–1.9 GPa which is on a level with the real strength. Additionally, the tensile stress–strain curve for the crystallographic direction 〈1 1 0〉 exhibited nonlinear elasticity and hysteresis.  相似文献   

15.
To grow ZnO single crystals from a high temperature solution of the ZnO‐PbF2 system, a gas cooling system was assembled at the bottom of the crucible to induce nucleation in the initial growth stage. The growth experiments were carried out in a homemade vertical Bridgman furnace and Pt crucible of 28 mm in diameter was used. The furnace temperature was set to 1100°C and the flow rate of the oxygen gas was optimized as 3.0 l/min. ZnO crystal up to 5∼8mm in the thickness was obtained with the lowering rate of 0.3 mm/h. XRD patterns showed that the as‐grown crystal was pure ZnO Wurtzite phase. The impurity ions were analyzed by the glow discharge mass spectroscopy (GDMS) as 390.0 ppm and 40.0 ppm for Pb2+ and F, respectively. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
We have successfully grown high-purity and -quality PbI2 single crystals by the vertical Bridgman method. The rocking curves of four-crystal X-ray diffraction (XRD) show 120 arcsec in full-width at half-maximum (FWHM). The photoluminescence (PL) spectra at 7.8 K show the resolved intensive exciton emission line and the weak DAP emission band. The deep-level emissions are not observed. The measurement of the electrical and radiographic properties show that Leadiodide (PbI2) single crystal has a resistivity of 5×1010 Ω cm and imager lag is 8 s, respectively. In order to improve the controllability of crystal growth, PbI2 single crystals were also grown from a lead (Pb) excess PbI2 source. The experimental results show very good reproducibility. In addition, the growth models of crystal are proposed, and the growth mechanism is discussed.  相似文献   

17.
《Journal of Crystal Growth》1999,196(2-4):623-637
Crystals of tetragonal hen egg white lysozyme (HEWL) grown on a series of space missions and their terrestrial counterparts were analyzed by gel electrophoresis and X-ray diffraction. The crystals were produced by vapor-diffusion and dialysis methods. The microgravity and terrestrial grown HEWL crystals were found to have effective partitioning coefficients (Keff) for an oxidatively formed covalent dimer impurity (MW 28 K) of 2 and 9, respectively, i.e. the latter contain 4.5 times more dimers. The microgravity grown crystals allowed the collection of 24% more useful reflections and improved the resolution from 1.6 to 1.35 Å. Other improvements were also noted including lower isotropic B-factors of 16.9, versus 23.8 Å2 for their terrestrial counterparts. High-resolution laser interferometry was applied quantitatively to evaluate the influence of dimer impurity on growth kinetics. It is shown that the growth of the (1 0 1) face from solution into which 1% dimers were introduced decelerates with increasing solution flow rate and the growth stops at a flow rate of about 0.2 mm/s. This effect occurs faster than in ultrapure solutions. The covalently bound dimers essentially increase the amplitudes of the striation-inducing growth rate fluctuations. The effect is ascribed to the enhanced transport of growth inhibiting HEWL dimer to the interface. Theoretical analysis shows that a stagnant solution around a growing crystal is strongly depleted with respect to impurity by about 60% for the measured growth parameters as compared to the solution bulk. Thus, a crystal in microgravity grows from essentially purer solution than the ones in the presence of convection flows. Therefore, it traps less stress inducing impurity and should be more perfect. For crystal/impurity systems where Keff is small enough microgravity should have an opposite effect.  相似文献   

18.
使用自行研制的椭球谐振腔式MPCVD装置,以H2-CH4为气源、沉积功率8 kW条件下,在不同CH4浓度、沉积温度和气体流量工艺条件下制备了大面积金刚石膜.使用X射线衍射仪对金刚石膜的择优取向的变化规律进行了研究.实验结果表明,高功率条件下工艺参数对金刚石膜的择优取向有不同程度的影响.在CH4浓度由0.5;上升到1.0;时,金刚石膜的择优取向由(220)转变为(111),由1.O;上升到2.5;时,则由(111)转变为(220)以及(311);在700 ~ 1050℃温度范围内,随着沉积温度的升高,金刚石膜(111)择优取向生长的倾向增高,当沉积温度高于1050℃时,金刚石膜改变了原先的以(111)择优取向生长的趋势,变为了以(100)择优取向生长;在气体流速为200~1000 sccm范围内时,随气体流量的增加,金刚石膜(111)择优取向的倾向增加.当气体流量大于1000sccm时,金刚石膜(111)择优取向的倾向又稍有降低.  相似文献   

19.
Homoepitaxial silicon carbide (SiC) films were grown on 3.5° off-oriented (0 0 0 1) 6H–SiC by metal-organic chemical vapor deposition (MOCVD) using bis-trimethylsilylmethane (BTMSM, C7H20Si2). A pronounced effect of the growth conditions such as source flow rate and growth temperature on the polytype formation and structural imperfection of the epilayer was observed. The growth behavior was explained by a step controlled epitaxy model. It was demonstrated by high-resolution X-ray diffractometry and transmission electron microscopy that high-quality 6H–SiC thin films were successfully grown at the optimized growth condition of substrate temperature 1440°C with the carrier gas flow rate of 10 sccm.  相似文献   

20.
Ammonothermal systems are modeled using fluid dynamics and heat and mass transfer models. The nutrient is considered as a porous media bed and the flow is simulated using the Darcy–Brinkman–Forchheimer model. The resulting governing equations are solved using the finite volume method. The effects of baffle design on flow pattern, heat and mass transfer in an autoclave are analyzed. For the research-grade autoclave with an internal diameter of 2.22 cm, the constraint for the GaN growth is found to be the growth kinetics and the total area of seed surfaces in the case of baffle opening of 10% (including the central opening of 5% and ring opening of 5%). The fluid flow across the baffle is a clockwise circulating flow which goes upwards in the central hole and downwards in the ring gap. Transport phenomena have been also studied in large-size ammonothermal growth systems with internal diameters of 4.44 cm and 10 cm. The flow pattern across the baffle changes to an anticlockwise circulating flow which goes upwards in the ring gap and downwards in the central hole in the case of 10% baffle opening. Since ammonothermal growth experiments are expensive and time-consuming, modeling becomes an effective tool for research and optimization of the ammonothermal growth processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号