首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
An efficient two-dimensional (2-D) analytical and numerical procedure has been proposed to investigate three-dimensional (3-D) internal flows through a passage with a spatially variable depth, in which the viscous forces act significantly on both upper and lower walls. The integral 2-D version of the Navier–Stokes equation was obtained by integrating the full Navier–Stokes equation in a 3-D form over the depth of the passage. In order to examine the validity of the integrated momentum equations, fully-developed flows in straight noncircular ducts were investigated analytically prior to numerical investigations. It has been shown that the exact solutions for circular, elliptical and equilateral triangular ducts are obtainable from the integrated Navier–Stokes equation. Having confirmed its wide applicability to internal flows, numerical computations were conducted to investigate the oscillation mechanism of a fluidic oscillator. Comparison of the present prediction and experiment reveals the validity of the present treatment.  相似文献   

2.
This paper presents the optimization of unsteady Navier–Stokes flows using the variational level set method. The solid–liquid interface is expressed by the level set function implicitly, and the fluid velocity is constrained to be zero in the solid domain. An optimization problem, which is constrained by the Navier–Stokes equations and a fluid volume constraint, is analyzed by the Lagrangian multiplier based adjoint approach. The corresponding continuous adjoint equations and the shape sensitivity are derived. The level set function is evolved by solving the Hamilton–Jacobian equation with the upwind finite difference method. The optimization method can be used to design channels for flows with or without body forces. The numerical examples demonstrate the feasibility and robustness of this optimization method for unsteady Navier–Stokes flows.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
This paper combines the pseudo‐compressibility procedure, the preconditioning technique for accelerating the time marching for stiff hyperbolic equations, and high‐order accurate central compact scheme to establish the code for efficiently and accurately solving incompressible flows numerically based on the finite difference discretization. The spatial scheme consists of the sixth‐order compact scheme and 10th‐order numerical filter operator for guaranteeing computational stability. The preconditioned pseudo‐compressible Navier–Stokes equations are marched temporally using the implicit lower–upper symmetric Gauss–Seidel time integration method, and the time accuracy is improved by the dual‐time step method for the unsteady problems. The efficiency and reliability of the present procedure are demonstrated by applications to Taylor decaying vortices phenomena, double periodic shear layer rolling‐up problem, laminar flow over a flat plate, low Reynolds number unsteady flow around a circular cylinder at Re = 200, high Reynolds number turbulence flow past the S809 airfoil, and the three‐dimensional flows through two 90°curved ducts of square and circular cross sections, respectively. It is found that the numerical results of the present algorithm are in good agreement with theoretical solutions or experimental data. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
5.
The numerical method of lines (NUMOL) is a numerical technique used to solve efficiently partial differential equations. In this paper, the NUMOL is applied to the solution of the two‐dimensional unsteady Navier–Stokes equations for incompressible laminar flows in Cartesian coordinates. The Navier–Stokes equations are first discretized (in space) on a staggered grid as in the Marker and Cell scheme. The discretized Navier–Stokes equations form an index 2 system of differential algebraic equations, which are afterwards reduced to a system of ordinary differential equations (ODEs), using the discretized form of the continuity equation. The pressure field is computed solving a discrete pressure Poisson equation. Finally, the resulting ODEs are solved using the backward differentiation formulas. The proposed method is illustrated with Dirichlet boundary conditions through applications to the driven cavity flow and to the backward facing step flow. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
张洪泉 《力学学报》1997,29(2):129-135
用有限差分方法求解三维Navier-Stokes方程和连续性方程,对时间发展的平面混合层中流向涡的产生原因进行了分析.将Rayleigh的轴对称无粘离心不稳定理论推广应用于分析混合层的二维基本流,并导出一无量纲量Ray=-(r/νθ)νθ/r,其中νθ为一流体质点相对于平均速度的速度,r为该质点迹线的曲率半径.当Ray>1.0时就会发生离心不稳定.采用这一判别式后发现混合层中展向涡的周围,尤其是在辫带区,的确存在离心不稳定区域,而过去的实验结果也表明三维不稳定产生于展向涡之间的辫带区.因此有理由认为,除非雷诺数特别小,离心不稳定是流向涡产生和发展的主要原因  相似文献   

7.
A simplified approach to simulate turbulent flows in curved channels is proposed. A set of governing equations of motion in Cartesian coordinates is derived from the full Navier–Stokes equations in cylindrical coordinates. Terms to first order in the dimensionless curvature parameter are retained, whereas higher‐order terms are neglected. The curvature terms are implemented in a conventional Navier–Stokes code using Cartesian coordinates. Direct numerical simulations (DNS) of turbulent flow in weakly curved channels are performed. The pronounced asymmetries in the mean flow and the turbulence statistics observed in earlier DNS studies are faithfully reproduced by the present simplified Navier–Stokes model. It is particularly rewarding that also distinct pairs of counter‐rotating streamwise‐oriented vortices are embedded in the simulated flow field. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
This study investigates a new energy relaxation method designed to capture the dynamics of unsteady, viscous, real gas flows governed by the compressible Navier–Stokes equations. We focus on real gas models accounting for inelastic molecular collisions and yielding temperature‐dependent heat capacities. The relaxed Navier–Stokes equations are discretized using a mixed finite volume/finite element method and a high‐order time integration scheme. The accuracy of the energy relaxation method is investigated on three test problems of increasing complexity: the advection of a periodic set of vortices, the interaction of a temperature spot with a weak shock, and finally, the interaction of a reflected shock with its trailing boundary layer in a shock tube. In all cases, the method is validated against benchmark solutions and the numerical errors resulting from both discretization and energy relaxation are assessed independently. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
A general review of the current research in vortex dynamics is presented, based on contributions given during a workshop held in May 2003 at Porquerolles, France. This article aims at providing a picture of the work performed on this subject in the French community. Various cases are covered, from 2D vortex patches to 3D vortex tubes; from isolated vortices to shear flows. Different contexts are considered: pure Euler and Navier–Stokes flows as well as stratified, rotating and magnetic flows. To cite this article: I. Delbende et al., C. R. Mecanique 332 (2004).  相似文献   

10.
The reduced Navier–Stokes and thin layer approximations to the Navier–Stokes equations are used to obtain solutions for viscous subsonic three-dimensional flows. A spatial marching method is combined with a direct sparse matrix solver to obtain successive solutions in a global relaxation process. Results have been obtained for flow fields with and without regions of flow reversal.  相似文献   

11.
In this paper, we propose a new lattice Boltzmann model for the compressible Navier–Stokes equations. The new model is based on a three‐energy‐level and three‐speed lattice Boltzmann equation by using a method of higher moments of the equilibrium distribution functions. As the 25‐bit model, we obtained the equilibrium distribution functions and the compressible Navier–Stokes equations with the second accuracy of the truncation errors. The numerical examples show that the model can be used to simulate the shock waves, contact discontinuities and supersonic flows around circular cylinder. The numerical results are compared with those obtained by traditional method. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
The paper studies unsteady Navier–Stokes equations with two space variables. It shows that the non-linear fourth-order equation for the stream function with three independent variables admits functional separable solutions described by a system of three partial differential equations with two independent variables. The system is found to have a number of exact solutions, which generate new classes of exact solutions to the Navier–Stokes equations. All these solutions involve two or more arbitrary functions of a single argument as well as a few free parameters. Many of the solutions are expressed in terms of elementary functions, provided that the arbitrary functions are also elementary; such solutions, having relatively simple form and presenting significant arbitrariness, can be especially useful for solving certain model problems and testing numerical and approximate analytical hydrodynamic methods. The paper uses the obtained results to describe some model unsteady flows of viscous incompressible fluids, including flows through a strip with permeable walls, flows through a strip with extrusion at the boundaries, flows onto a shrinking plane, and others. Some blow-up modes, which correspond to singular solutions, are discussed.  相似文献   

13.
An improved hybrid method for computing unsteady compressible viscous flows is presented. This method divides the computational domain into two zones. In the inner zone, the Navier–Stokes equations are solved using a diagonal form of an alternating‐direction implicit (ADI) approximate factorisation procedure. In the outer zone, the unsteady full‐potential equation (FPE) is solved. The two zones are tightly coupled so that steady and unsteady flows may be efficiently solved. Characteristic‐based viscous/inviscid interface boundary conditions are employed to avoid spurious reflections at that interface. The resulting CPU times are about 60% of the full Navier–Stokes CPU times for unsteady flows in non‐vector processing machines. Applications of the method are presented for a F‐5 wing in steady and unsteady transonic flows. Steady surface pressures are in very good agreement with experimental data and are essentially identical to the full Navier–Stokes predictions. Density contours show that shocks cross the viscous/inviscid interface smoothly, so that the accuracy of full Navier–Stokes equations can be retained with significant savings in computational time. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

14.
An iterative adaptive equation multigrid solver for solving the implicit Navier–Stokes equations simultaneously with tri-tree grid generation is developed. The tri-tree grid generator builds a hierarchical grid structur e which is mapped to a finite element grid at each hierarchical level. For each hierarchical finite element multigrid the Navier–Stokes equations are solved approximately. The solution at each level is projected onto the next finer grid and used as a start vector for the iterative equation solver at the finer level. When the finest grid is reached, the equation solver is iterated until a tolerated solution is reached. The iterative multigrid equation solver is preconditioned by incomplete LU factorization with coupled node fill-in. The non-linear Navier–Stokes equations are linearized by both the Newton method and grid adaption. The efficiency and behaviour of the present adaptive method are compared with those of the previously developed iterative equation solver which is preconditioned by incomplete LU factorization with coupled node fill-in.  相似文献   

15.
In this paper, we present higher order least-squares finite element formulations for viscous, incompressible, isothermal Navier–Stokes equations using spectral/hp basis functions. The second-order Navier–Stokes equations are recast as first-order system of equations using stresses as auxiliary variables. Both steady-state and transient problems are considered. For a better coupling of pressure and velocity, especially in transient flows, an iterative penalisation strategy is employed. The outflow-type boundary conditions are applied in a weak sense through the least-squares functional. The formulation is verified by solving various benchmark problems like the lid-driven cavity, backward-facing step and flow over cylinder problems using direct serial solver UMFPACK.  相似文献   

16.
Solution algorithms for solving the Navier–Stokes equations without storing equation matrices are developed. The algorithms operate on a nodal basis, where the finite element information is stored as the co-ordinates of the nodes and the nodes in each element. Temporary storage is needed, such as the search vectors, correction vectors and right hand side vectors in the conjugate gradient algorithms which are limited to one-dimensional vectors. The nodal solution algorithms consist of splitting the Navier–Stokes equations into equation systems which are solved sequencially. In the pressure split algorithm, the velocities are found from the diffusion–convection equation and the pressure is computed from these velocities. The computed velocities are then corrected with the pressure gradient. In the velocity–pressure split algorithm, a velocity approximation is first found from the diffusion equation. This velocity is corrected by solving the convection equation. The pressure is then found from these velocities. Finally, the velocities are corrected by the pressure gradient. The nodal algorithms are compared by solving the original Navier–Stokes equations. The pressure split and velocity–pressure split equation systems are solved using ILU preconditioned conjugate gradient methods where the equation matrices are stored, and by using diagonal preconditioned conjugate gradient methods without storing the equation matrices. © 1998 John Wiley & Sons, Ltd.  相似文献   

17.
The steady flow arising in a spheroidal cavity with periodically-deformed elastic wall is studied experimentally. It is found that average flows whose intensities and structures depend on the wall oscillation frequency and amplitude can develop in the fluid. The average flow is generated in the Stokes boundary layer whose relative thickness is characterized by the dimensionless frequency of the vibrational action. Flow in the form of a pair of toroidal vortices which occupy the entire cavity volume can be observed over the range of low dimensionless frequencies when the boundary layer thickness is comparable with the characteristic cavity dimension. Increase in the dimensionless frequency (decrease in the relative thickness of the Stokes layers) leads to a displacement of the primary vortices towards the cavity boundary. In this case secondary vortices with opposite swirling are formed in the central part of the cavity above the primary vortices. The further increase in the dimensionless frequency leads to development of the secondary vortices and growth of the flow intensity. The large-scale secondary vortices occupy almost the entire cavity volume over the range of high dimensionless frequencies. The dependences of the regimes of average flows and their intensities on the control dimensionless parameters, the oscillation amplitude and frequency, are found on the basis of the results of the investigation.  相似文献   

18.
An unstructured non‐nested multigrid method is presented for efficient simulation of unsteady incompressible Navier–Stokes flows. The Navier–Stokes solver is based on the artificial compressibility approach and a higher‐order characteristics‐based finite‐volume scheme on unstructured grids. Unsteady flow is calculated with an implicit dual time stepping scheme. For efficient computation of unsteady viscous flows over complex geometries, an unstructured multigrid method is developed to speed up the convergence rate of the dual time stepping calculation. The multigrid method is used to simulate the steady and unsteady incompressible viscous flows over a circular cylinder for validation and performance evaluation purposes. It is found that the multigrid method with three levels of grids results in a 75% reduction in CPU time for the steady flow calculation and 55% reduction for the unsteady flow calculation, compared with its single grid counterparts. The results obtained are compared with numerical solutions obtained by other researchers as well as experimental measurements wherever available and good agreements are obtained. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
A pressure-smoothing scheme for Stokes and Navier–Stokes flows of Newtonian fluids and for Stokes flow of Maxwell fluids is described. The stress deviator obtained from the calculated velocity field is substituted into the governing equilibrium equation. The resulting equation is then solved to obtain a new, smoothed pressure by a least square finite element method.  相似文献   

20.
Simulation of nano‐scale channel flows using a coupled Navier–Stokes/Molecular Dynamics (MD) method is presented. The flow cases serve as examples of the application of a multi‐physics computational framework put forward in this work. The framework employs a set of (partially) overlapping sub‐domains in which different levels of physical modelling are used to describe the flow. This way, numerical simulations based on the Navier–Stokes equations can be extended to flows in which the continuum and/or Newtonian flow assumptions break down in regions of the domain, by locally increasing the level of detail in the model. Then, the use of multiple levels of physical modelling can reduce the overall computational cost for a given level of fidelity. The present work describes the structure of a parallel computational framework for such simulations, including details of a Navier–Stokes/MD coupling, the convergence behaviour of coupled simulations as well as the parallel implementation. For the cases considered here, micro‐scale MD problems are constructed to provide viscous stresses for the Navier–Stokes equations. The first problem is the planar Poiseuille flow, for which the viscous fluxes on each cell face in the finite‐volume discretization are evaluated using MD. The second example deals with fully developed three‐dimensional channel flow, with molecular level modelling of the shear stresses in a group of cells in the domain corners. An important aspect in using shear stresses evaluated with MD in Navier–Stokes simulations is the scatter in the data due to the sampling of a finite ensemble over a limited interval. In the coupled simulations, this prevents the convergence of the system in terms of the reduction of the norm of the residual vector of the finite‐volume discretization of the macro‐domain. Solutions to this problem are discussed in the present work, along with an analysis of the effect of number of realizations and sample duration. The averaging of the apparent viscosity for each cell face, i.e. the ratio of the shear stress predicted from MD and the imposed velocity gradient, over a number of macro‐scale time steps is shown to be a simple but effective method to reach a good level of convergence of the coupled system. Finally, the parallel efficiency of the developed method is demonstrated. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号