首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Nine sets of (3 × 3) InP nanofiber samples have been successfully prepared at three different voltages (20, 25, 30 kV) and at three separate heights (5, 7, 10 cm) by electrospinning with a constant precursor flow rate of 0.3 mLh−1. The crystalline structure, thermal, morphologies and nanostructure, electrical, and optical properties of the samples are characterized by X‐ray powder diffractometer (XRD) and thermal gravity‐differential scanning calorimeter (TG‐DSC), scanning electron microscopy (SEM), by Four‐Point Probe Technique (FPPT,) and ultraviolet/visible spectrometry (UV/VIS), respectively. From these measurements, we have found the formation of stoichiometric nanostructured InP with zinc‐blende structure and having lattice parameter of a = 5.874 Å, weight loss of 64.59% and crystallization temperature of 500°C, average fiber diameter of 65.82 nm, the activation energies, Ea, of the samples, and band gap energy, Eg, of the nanofibers developed at constant applied voltage 30 kV. The band gap energies determined at different distances 5, 7, and 10 cm are found to be as 1.29, 1.37, and 1.30 eV, respectively.  相似文献   

2.
This study deals with the role of the different substrates on the microstructural, optical and electronical properties of TiO2 thin films produced by conventional direct current (DC) magnetron sputtering in a mixture of pure argon and oxygen using a Ti metal target with the aid of X–ray diffractometer (XRD), ultra violet spectrometer (UV–vis) and atomic force microscopy (AFM) measurements. Transparent TiO2 thin films are deposited on Soda lime glass, MgO(100), quartz and sitall substrates. Phase purity, surface morphology, optical and photocatalytic properties of the films are compared with each other. It is found that the amplitude of interference oscillation of the films is in a range of 77‐89%. The transmittance of the film deposited on Soda lime glass is the smallest while the film produced on MgO(100) substrate obtains the maximum transmittance value. The refractive index and optical band gap of the TiO2 thin films are also inferred from the transmittance spectra. The results show that the film deposited on Soda lime glass has the better optical property while the film produced on MgO(100) substrate exhibits much better photoactivity than the other films because of the large optical energy band gap. As for the XRD results, the film prepared on MgO(100) substrate contains the anatase phase only; on the other hand, the other films contain both anatase and rutile phases. Furthermore, AFM images show that the regular structures are observed on the surface of all the films studied. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Nanostructured titanium dioxide thin films were prepared using reactive pulsed laser ablation technique. Effects of annealing on the structural, morphological, electrical and optical properties are discussed. The structural, electrical and optical properties of TiO2 films are found to be sensitive to annealing temperature and are described with GIXRD, SEM, AFM, UV‐Visible spectroscopy and electrical studies. X‐ray diffraction studies showed that the as‐deposited films were amorphous and at first changed to anatase and then to rutile phase with increase of annealing temperature. Optical constants of these films were derived from the transmission spectra and the refractive index dispersion of the films, subjected to annealing at different temperatures, is discussed in terms of the single oscillator‐Wemple and Didomenico model. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Titanium dioxide (TiO2) thin film was deposited on n‐Si (100) substrate by reactive DC magnetron sputtering system at 250 °C temperature. The deposited film was thermally treated for 3 h in the range of 400‐1000 °C by conventional thermal annealing (CTA) in air atmosphere. The effects of the annealing temperature on the structural and morphological properties of the films were investigated by X‐ray diffraction (XRD) and atomic force microscopy (AFM), respectively. XRD measurements show that the rutile phase is the dominant crystalline phase for the film annealed at 800 °C. According to AFM results, the increased grain sizes indicate that the annealing improves the crystalline quality of the TiO2 film. In addition, the formation of the interfacial SiO2 layer between TiO2 film and Si substrate was evaluated by the transmittance spectra obtained with FTIR spectrometer. The electronic band transitions of as‐deposited and annealed films were also studied by using photoluminescence (PL) spectroscopy at room temperature. The results show that the dislocation density and microstrain in the film were decreased by increasing annealing temperature for both anatase and rutile phases. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Manganese sulphide (MnS) thin films have been deposited onto glass substrate by a low cost spray‐pyrolysis technique at 220 °C. The as‐deposited MnS thin films have been characterized using scanning electron microscopy (SEM), energy dispersive X‐ray (EDX) spectroscopy, atomic force microscopy (AFM), X‐ray diffraction, UV visible spectroscopy and photo electrochemical (PEC) measurement. The SEM and AFM images showed that the MnS thin films were well covered onto the substrate surface. The as‐deposited raw thin film was found to be amorphous in nature and perfectly crystalline phase after annealing the sample. Optical band gap of the MnS thin films was found to vary from 3.1 to 3.21 eV and the band gap decreases with the increase in film thickness. Optical constants such as refractive index, extinction coefficient have been evaluated using reflectance and absorbance data. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Influences of the different annealing ambient (in air, 1 bar, 2 bar, 3 bar and 4 bar oxygen partial pressure) on the titanium dioxide (TiO2) thin films deposited on soda lime glass by standard radio frequency (rf) magnetron reactive sputtering method at 100 watt were investigated by means of X–ray diffractometer (XRD), ultra violet spectrometer (UV–vis), and Scanning Electron Microscopy (SEM). It was found that either optical properties or energy band gaps of the films enhanced with increase in the oxygen partial pressure up to 3 bar. The energy band gaps of the films (except for the film annealed in 4 bar oxygen partial pressure) became larger than the film annealed in atmospheric pressure. The best transmission was observed for the thin film annealed in 3 bar oxygen partial pressure. Moreover, not only was grain–like structure found to be more dominant than dot–like structure but also growth of anatase phase was observed instead of that of the rutile phase with increasing oxygen partial pressure up to 3 bar. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Currently, the use of fuel cell electrodes containing Pt catalysts has been limited due to technological problems in this system, primarily the system's high cost. The improvement of Pt catalyst use has been achieved by changes in the Pt immobilization method. In this study, we have studied Pt immobilization on carbon nanofiber composites using the photodeposition method. First, we prepared the carbon nanofibers, which were homogeneously embedded TiO2 using the electrospinning technology. These TiO2‐embedded carbon nanofiber composites (TiO2/CNFs) were then immersed in a Pt precursor solution and irradiated with UV light. The obtained Pt‐deposited TiO2/CNFs contained Pt that was immobilized on the carbon nanofibers, and the Pt particle size was 2‐5 nm. The XPS spectra showed that the amount of Pt increased with an increasing UV irradiation time. The current densities and total charge also increased with an increase in the UV irradiation time, possibly due to an increase of active specific area by finely dispersed Pt nanoparticles. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Anatase TiO2 nanoparticles were successfully synthesized by post-heat treatments of partially crystalline Ti and amorphous TiOx nanoparticles, respectively produced by inert gas condensation and subsequent oxidation. The nanoparticles condensed on a liquid-nitrogen containing cooling finger (sample LN) were identified to be partially crystalline Ti phase with ~ 10–20 vol.% amorphous TiOx. On the other hand, those condensed on a room-temperature cooling finger (sample RT) were almost completely amorphous TiOx phase. Differential scanning calorimetry scan curves of as-oxidized samples were interpreted using Kissinger analysis, the non-isothermal kinetics, and activation energy for the anatase formation was determined as ~ 455 and 865 kJ/mol for samples LN and RT, respectively. As-oxidized samples LN and RT were heat treated at 400 °C for 2 h, respectively (samples LN-H and RT-H). Samples LN-H and RT-H showed the onset of UV–visible light absorption near 400 nm and the optical band gap of 3.12 and 3.21 eV, respectively, corresponding to anatase. The sample LN-H showed faster photocatalytic decomposition of methylene blue and rhodamine B dyes compared to the sample RT-H due to high crystallinity of anatase and rutile phases.  相似文献   

9.
The chalcopyrite CuInS2 thin film was fabricated at 500 °C for 2 h by sulfurization of Cu‐In layers (as precursors) that were sulfurized in a glass tube with pure sulfur powder. The structural, morphological, and optical properties of CuInS2 thin films are characterized using X‐ray diffraction (XRD), field‐emission scanning electron microscope (FE‐SEM), and UV/Visible/NIR spectrophotometer. The study of UV/Visible/NIR absorption shows the band gap energy value of CuInS2 thin films is 1.5 eV. The XRD pattern shows the film is pure CuInS2; no other peaks, such as CuS or CuIn5S8 were observed. Furthermore, the surface of the CuInS2 film is compact characterized by FE‐SEM, which also shows the disappearance of CuS on the surface at 500 °C.  相似文献   

10.
In this paper, we report the effect of annealing temperature on the properties of copper indium diselenide (CuInSe2) thin films. The CuInSe2 thin films were fabricated at 500 °C for 2 h by annealing Cu‐In layers (as precursors) selenized in a glass tube with pure selenium powder. The structural and morphological properties of the CuInSe2 thin films were characterized respectively by means of x‐ray diffraction (XRD) and field‐emission scanning electron microscope (FE‐SEM). The type of CuInSe2 thin film has been identified as direct allowed and the band gap value was determined. The study of UV/Visible/NIR absorption shows that the band gap value of CuInSe2 thin film is about 1.07 eV, which is within an optimal range for harvesting solar radiation energy. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Nanocrystalline 1%, 2% and 4% Cobalt-doped TiO2 were prepared by sol–gel technique, followed by freeze-drying treatment at ?30 °C temperature for 12 h. The obtained gels were thermally treated at 200, 400, 600 and 800 °C. X-ray Powder Diffraction (XRD), Scanning Electron microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDAX) were used to study its structural properties. The XRD pattern shows the coexistence of anatase phase and minor brookite phase. UV–vis Spectroscopy and Photoluminescence (PL) were used to study its optical properties. Optical band gap was calculated with the incorporation of different concentrations of cobalt. UV–visible spectroscopy shows variation in band gap for the sample treated at different temperatures for same concentration. All Cobalt doped TiO2 nanostructures show an appearance of Red shift relative to the bulk TiO2. The determination of magnetic properties was also carried out by Gouy balance method.  相似文献   

12.
Self‐assembling nanoflakes‐based crossed architectures of stannous oxide (SnO) were successfully synthesized via template‐free hydrothermal growth method by using SnCl2·2H2O and KOH as precursors. Crystal structures, morphology, chemical composition and optical properties were examined by X‐ray diffraction (XRD), field‐emission scanning electron microscopy (FESEM), energy dispersive X‐ray analysis, and Raman spectroscopy, respectively. The results indicate that the as‐synthesized product belongs to tetragonal phase SnO with crossed morphology self‐assembled by nanoflakes. Furthermore, UV‐vis spectrophotometry was used to determine optical band gap of the SnO nanostructures and the direct band gap of 2.90 eV was obtained. The photocatalysis of the product has been evaluated with methyl orange and the high degradation ratio of 87% is obtained in 240 minutes under the measuring condition which is attributed to the wide band gap and large specific surface area of the nanoflakes‐based crossed SnO architectures. A possible growth mechanism is proposed in the end.  相似文献   

13.
K0.5Na0.5NbO3 powders have been directly synthesized by an alternative solid–state method. Stoichimometric mixture of ammonium niobium oxalate and C4H4O6KNa·4H2O were calcined in temperature range from 500 to 800 °C for 3 h. The precursor and calcination products were characterized with respect to stoichiometry, purity, crystalline structure, particle size and powder morphology using X–ray diffraction (XRD), X‐ray fluorescence (XRF) spectrometer, scanning electron microscope (SEM), Fourier transform infrared (FTIR) spectra, thermogravimetric (TG) analysis, differential scanning calorimetry (DSC) and UV–Vis diffuse reflectance (UV–Vis) spectroscopy. XRD and XRF results reveal that stoichiometric K0.5Na0.5NbO3 powders could be synthesized by the method. The particle size is about 68 nm for the precursor calcined at 500 °C according to XRD data, which is in good agreement with SEM data. The average band gap energy is estimated to be 3.18 eV by UV–vis diffuse reflectance spectra. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Xin He  Xiujian Zhao  Baoshun Liu 《Journal of Non》2008,354(12-13):1267-1271
The TiO2 thin films loaded with silver nanoparticles were prepared on soda-lime glass substrates by a photoinduced deposition method. The TiO2 films immersed in AgNO3 solution were vertically irradiated by UV light with center wavelength of 365 nm for 60 h. The as-produced films were characterized by X-ray diffraction (XRD), UV–Vis spectroscopy, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The studies show that the film after UV excitation is composed of anatase phase TiO2 and metallic silver with face centered cubic structure. A possible growth mechanism of silver nanoparticles on TiO2 thin films under UV irradiation was proposed. The charge carriers of TiO2 semiconductor are generated by photoexcitation. Owing to the conduction band position of TiO2 which is above the standard potential of Ag+/Ag, the generated electrons could transfer from the conduction band to Ag+ adsorbed on the surface of the TiO2 films. Therefore, the Ag+ was finally reduced into a Ag atom, which could preferentially localize in the grain boundaries of TiO2 particles due to high surface free energy there. With the irradiation time extended, silver nanoparticles were shaped into certain morphologies on the surface of the TiO2 films.  相似文献   

15.
NbSe3 nanofibers and NbSe2 sheets were prepared by solid state reaction. The as‐prepared products are characterized by powder X‐ray diffraction (XRD), and scanning electron microscopy (SEM). The results showed that the obtained NbSe3 nanofibers have a diameter in the range of 100–300 nm and length about 10 μm, while the NbSe2 sheets have a hexagon structure. The tribological properties of the as‐prepared NbSex powders as additives in HVI500 base oil were investigated on UMT‐2 multispecimen tribo‐tester. The wear scars were measured by VEECO WYKO NT1100 non‐contact optical profile testing instrument. It is found that the addition of both NbSex nanofibers/sheets improves the tribological properties of base oil. Furthermore, NbSe2 sheets exhibit better friction reduction and wear resistance properties than NbSe3 nanofibers in HVI500 base oil. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
《Journal of Non》2006,352(38-39):3970-3978
Nanoparticles of titanium dioxide co-doped with Y3+ and Rb+ were prepared using the sol–gel method and were characterized by thermogravimetric-differential thermal analysis (TG-DTA), scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis. Y3+ and Rb+ co-doped TiO2 powder calcined at 800 °C shows a synergistic effect, which shifted the transformation anatase–rutile to higher temperature. X-ray diffraction and XPS analysis revealed that Y3+ and Rb+ did not enter into the crystal lattices of TiO2 and are uniformly dispersed onto TiO2 particles. In this study, the conductivity measurements were performed under ambient atmosphere on undoped and co-doped TiO2 in order to investigate the defect chemistry by identifying the predominant charge carriers. An increase in the conductivity σ of nano-TiO2 is shown when the samples were co-doped with Y3+ and Rb+.  相似文献   

17.
In this paper, chalcopyrite AgInS2 nanorods were synthesized for the first time by a one‐step, ambient pressure, environment friendly organic molten salt (OMS) method at 200 °C. The as‐synthesized products were characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), respectively. The XRD results reveal that the as‐synthesized products at 120–160 °C under ambient pressure contain AgIn5S8 which will decrease with the increase of growth temperature. A sample containing only the chalcopyrite AgInS2 phase is successfully obtained at 200 °C. Furthermore, the elemental compositions are found to become increasingly stoichiometric with increasing temperature. UV‐Vis and photoluminescence (PL) spectra are utilized to investigate the optical properties of AgInS2 nanorods. By testing on UV‐Vis spectra, it is concluded that the limiting wavelength of the AgInS2 nanorods is 661 nm and the band gap is 1.88 eV. A broad red emission band peak centered at about 1.874 eV (662 nm) is clearly observed at room temperature, and the intensity of the emission increases with excitation wavelength. In addition, the photoluminescence quantum yield (PLQY) of the nanocrystals at the excitation wavelength of 250 nm was determined to be 13.2%. A possible growth mechanism of AgInS2 nanorods was discussed. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Well‐faceted hexagonal ZnO nanorods have been synthesized by a simple hydrothermal method at relative low temperature (90°C) without any catalysts or templates. Zinc oxide (ZnO) nanorods were grown in an aqueous solution that contained Zinc chloride (ZnCl2, Aldrich, purity 98%) and ammonia (25%). Most of the ZnO nanorods show the perfect hexagonal cross section and well‐faceted top and side surfaces. The diameter of ZnO nanorods decreased with the reaction time prolonging. The samples have been characterized by X‐ray powder diffraction (XRD) and scanning electron microscopy (SEM) measurement. XRD pattern confirmed that the as‐prepared ZnO was the single‐phase wurtzite structure formation. SEM results showed that the samples were rod textures. The surface‐related optical properties have been investigated by photoluminescence (PL) spectrum and Raman spectrum. Photoluminescence measurements showed each spectrum consists of a weak band ultraviolet (UV) band and a relatively broad visible light emission peak for the samples grown at different time. It has been found that the green emission in Raman measurement may be related to surface states. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
A new approach, combining in‐situ sol‐gel process with electrospinning, was used to prepare magnetic barium acetate/manganese acetate/poly (vinyl alcohol) (PVA) composite nanofibers. The composite gel was synthesized by sol‐gel method in the presence of 10 wt.% PVA aqueous solution. PVA was used as stabilizer and polymeric matrix. The resultant barium acetate/manganese acetate/PVA composite nanofibers were calcined at 1023 K for 5 h. This formed BaO/MnO nanocomposite crystalline fibers with average diameter less than 100 nm and were characterized with Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Energy Dispersive X‐ray Analysis (EDAX), powder X‐ray diffractometer (XRD), UV‐Vis‐Spectroscopy (UV) and Vibrating Sample Magnetometer (VSM) respectively. These composite fibers exhibited a uniform cylindrical morphology, with the BaO/MnO nanoparticles implanted in the fibers. M‐H curves were obtained at 300 K and 20 K. From the M‐H curves, room temperature ferromagnetism was observed at 300 K. At low temperatures, the ferromagnetic behavior was masked by the paramagnetic behavior. The saturation magnetization at 300 K was found to be 0.004 emu /g and the saturation magnetization at 20 K was found to be 0.658 emu /g. The magnetization at 20 K was found to be very large and it was several times larger than at 300 K. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
The vanadium (V)-doped mesoporous titanium dioxide (TiO2) nanoparticles at low V/Ti ratios ranging from 0 to 2 wt% were prepared using hydrolytic sol–gel method in the presence of tri-block copolymer Pluronic F127. The microstructures of TiO2 in terms of morphology, crystallization, chemical states of species, surface area, and band gap were characterized by SEM, TEM, XRPD, XPS, surface area analyzer, and UV–Vis spectrophotometer, respectively. SEM images showed that the V-doped TiO2 nanoparticles were porous structures, and the surface areas and pore sizes ranged from 86 ± 9 to 96 ± 15 m2/g and from 12 ± 4 to 15 ± 2 nm, respectively. The XRPD patterns indicated that V-doped mesoporous TiO2 after calcination at 500 °C was mainly anatase phase, and the crystallite sizes were in the range 14–16 nm, which are consistent with the results obtained from SEM images. XPS spectra and HRTEM images showed that vanadia was doped both on the surface and in the lattice of anatase TiO2. A slight red-shift in wavelength absorption was observed when V/Ti ratio increased from 0 to 2 wt%. Methylene blue (MB) was further used as the target compound to examine the photocatalytic activity of V-doped mesoporous TiO2 nanocatalysts under illumination of solar simulator or UV light. Addition of vanadium ions slightly decreased the photocatalytic activity of TiO2 toward the decolorization of MB under the illumination of UV light at 305 nm. However, a 1.6–1.8 times increase in rate constants for MB photodegradation was observed when 0.5–1.0 wt% V-doped TiO2 was illuminated with sunlight at AM 1.5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号