首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Boron Nitride is a promising group 13–group 15 compound material that exhibits various interesting properties like wide band gap, chemical stability, attractive mechanical properties and other. The growth behavior of this material has not been investigated in sufficient details to tailor properties of the resulting films. In this work we present the results on the growth of turbostratic boron nitride (t‐BN) thin films at a relatively high growth rate of 3 μm/h with the aim to investigate the potential use of boron trichloride in combination with ammonia as precursors for growth. Deposition experiments were conducted in a vertical cold wall high temperature chemical vapor deposition reactor in the temperature range 1000°C–1700°C depending on the substrate used. Templates of w‐AlN (0001), 4° off‐cut 4H‐SiC (0001), Cr (110) and W (110) were employed as substrates for the BN growth. As‐grown BN layers were characterized by Scanning Electron Microscopy, X‐Ray Diffraction, Electron Diffraction and Raman Spectroscopy. The results indicate that temperature and N/B ratio have a great influence on the crystallinity of the deposited films. For AlN and SiC substrates, a temperature of 1600°C and N/B ratio in range between 3 and 7.5 were identified as the best parameters for the growth of a 2 μm thick t‐BN layer with a spacing between basal planes of about 3.36 Å compare to the 3.33 Å spacing between basal planes of hexagonal or rhombohedral BN (h‐BN or r‐BN). For Cr and W substrates which have a lower mismatch with h‐BN (1 and 8.8 %), layers of t‐BN were deposited at much lower temperature (1000°C–1150°C) with a spacing between basal planes of 3.5 Å and morphology similar to that observed on SiC substrates. We obtained t‐BN layers with in plane strong disorder but out of plane orientation (c‐axis normal to the surface).  相似文献   

2.
InGaN/GaN multiple quantum well-based blue light emitting diodes (LEDs) with different spacer layer structures were grown by metalorganic chemical vapor deposition. Fast-Fourier-transformed high-resolution transmission electron microscopy was used to determine the influence of the strain status in the spacer layer on Mg distribution and device performance. A comparison of the (1 1¯ 0 0) planar distance showed that the high-temperature grown InGaN layer in the spacer had a high level of stored strain. This led to the formation of a continuous facet contrast induced by Mg segregation in the p-layer, which was responsible for the deterioration of the electroluminescence performance of the LEDs. These results show that the delicate control of stored strain in nitride films is important for improving the device performance.  相似文献   

3.
GaN-based InGaN/GaN multi-quantum-well light emitting diode (MQW LED) structures were grown by metal organic chemical vapor deposition method. The optical properties of the LED structure have been investigated by using the photoluminescence and electroluminescence measurement. Both photoluminescence and electroluminescence results indicate that near pure InN clusters exist within the InGaN layers, which are responsible for the light emission in the LED. With increasing the Mg activation temperature of p-GaN layer, the optical properties of the LED structure tended to significantly degrade. This degradation was found to be deeply related to the variation of InN clusters in the active region. By the current–voltage measurement, a large forward voltage variation was observed. The voltage variation is caused to the conductivity variation of the p-GaN layer due to the different activation temperature. The turn-on voltage obtained from the best LED was 2.56 V and the forward voltage measured at 20 mA was 3.5 V. On the basis of these results, activation of the Mg-doped p-GaN layer must be carried out at the lowest possible value so as to obtain the better performance of LEDs.  相似文献   

4.
We prepared InGaN layers on GaN/sapphire substrates using rf-MBE. Photoluminescence (PL) from these layers, grown at different temperatures TS, shows that there is a strong tendency of GaN to form a separate phase as TS is increased from 600°C to 650°C. Concomitant with the phase separation, the PL from the InGaN phase broadens, which indicates that indium composition in this phase becomes increasingly non-uniform. Indium compositions measured by Rutherford backscattering (RBS) are consistent with these results. We also observed an increase in PL intensity for InGaN layers grown at higher temperatures. In this paper, we also report on preparing a top-contact InGaN/GaN light emitting diode. The device was operated at 447 nm and had the emission line width of 37 nm with no observable impurity related features. The turn-on voltage was 3.0 V. The output power was 20 μW at 60 mA drive current.  相似文献   

5.
Epitaxial GaN films have been grown on c-cut sapphire substrates by pulsed laser deposition (PLD) using a KrF laser. The properties of GaN films were improved by increasing the growth temperature to 800°C and the nitrogen pressure during growth to 10 mTorr. Room-temperature photoluminescence exhibits a strong band-edge emission at 3.4 eV. From transmission electron microscopy (TEM), the predominant defects in PLD-GaN observed are stacking faults parallel to the interface and screw dislocations along c-axis, the latter differing from the previously published results where most of the threading dislocation in GaN grown by other techniques are of edge type with Burgers vector of .  相似文献   

6.
Nonionic polymer poly (vinylpyrrolidone) (PVP) was firstly mixed into oxygenated zinc chloride electrolyte to modulate the crystal growth and morphology of ZnO from electrodeposition. Arrays of ZnO hexagonal prisms with well-defined (0 0 0 1) end facets and side facets were grown perpendicularly onto p-type Si substrates using the simple and economic route. It was observed that the concentration of PVP played an important role in the final morphology and size of ZnO crystals. The optical studies indicated that the addition of PVT not only influenced crystal growth habit but also improved the optical properties of ZnO.  相似文献   

7.
We have studied the luminescence properties of GaN LEDs by electroluminescence microscopy (ELM) and micro-electroluminescence (μ-EL) spectroscopy. Spatial inhomogeneity in the deep level region of the spectra is observed in spectrally resolved ELM images. Room temperature μ-EL spectra measured from 5×5 μm2 regions show anti-correlation of the defect-related recombination (E=1.95–2.45 eV) with the band-edge emission (E=3.18 eV).  相似文献   

8.
Twenty-five micrometer thick GaN was grown with hydride vapor phase epitaxy (HVPE) on metal-organic chemical vapor deposition (MOCVD) grown templates on sapphire substrates with the gallium treatment step (GTS) technique with varying buffer layer thickness. The samples are studied with atomic force microscopy (AFM), etching and scanning electron microscopy (SEM), photo-luminescence (PL), X-ray diffraction (XRD) and optical microscopy. The results show that the thickness of the buffer layer is not important for the layer quality once the growth in MOCVD starts to make the transition from 3D growth to 2D growth and HVPE continues in the same growth mode. We show that the MOCVD templates with GTS technique make excellent templates for HVPE growth, allowing growth of GaN without cracks in either sapphire or GaN.  相似文献   

9.
Raman scattering spectroscopy was utilized for investigation of the structural properties of thick GaN layers. These layers with thickness ∼ 40 μm have been grown by HVPE technique on the sapphire substrates. The investigations have been focused on the strain distribution in GaN layer cross‐section as a function of distance from an interface sapphire/GaN and mapping of the surface and of the inner layer, near the sapphire/GaN interface. From the observed phonon shifts in the Raman spectra strain differences lower than 6.4×10–4 corresponding to stress differences of 240 MPa were estimated across the thick GaN epitaxial layer. The measurements exhibit that strain in the layer causes changes in the Raman spectra and allow determining the relaxation process in the crystal. The obtained results confirmed, that the mode frequencies in the measured Raman spectra in both directions (parallel or perpendicular to the growth direction) for layer thicknesses over 30 µm are comparable with typical values for bulk material and match the low strain in the structure due to relaxation processes. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
We have investigated the growth of magnesium-doped GaP (GaP:Mg) layers on GaN by metalorganic chemical vapor deposition. The hole carrier concentration increased linearly from 0.8×1018 to 4.2×1018 cm−3 as the Bis(cyclopentadienyl) magnesium (Cp2Mg) mole flow rate increased from 1.2×10−7 to 3.6×10−7 mol/min. However, the hole carrier concentration decreased when the CP2Mg mole flow rate was further increased. The double crystal X-ray diffraction (DCXRD) rocking curves showed that the GaP:Mg layers were single crystalline at low CP2Mg molar flow. However, the GaP:Mg layers became polycrystalline if the CP2Mg molar flow was too high. The decrease in hole carrier concentration at high CP2Mg molar flow was due to crystal quality deterioration of the GaP layer, which also resulted in the low hole mobility of the GaP:Mg layer.  相似文献   

11.
The optical spectra of a set of high quality quantum wells, with well characterized structural parameters, are presented here. We propose a quantitative calculation for the measured emission energies which takes into account the spontaneous and piezoelectric polarization fields and the field-screening effect due to electron-hole photogenerated pairs; such an effect is especially effective in wide QW samples which in fact behave like mesoscopic capacitors.  相似文献   

12.
Long-wavelength vertical cavity surface emitting lasers (VCSELs) are considered the best candidate for the future low-cost reliable light sources in fiber communications. However, the absence of high refractive index contrast in InP-lattice-matched materials impeded the development of 1.3–1.5 μm VCSELs. Although wafer fusions provided the alternative approaches to integrate the InP-based gain materials with the GaAs/AlAs materials for their inherent high refractive index contrast, the monolithic InP-based lattice-matched distributed Bragg reflectors (DBRs) are still highly attractive and desirable. In this report, we demonstrate InP/InGaAlAs DBRs with larger refractive index contrast than InP/InGaAsP and InAlAs/InGaAlAs DBRs. The switching between InP and InGaAlAs layers and growth rate control have been done by careful growth interruption technique and accurate in situ optical monitoring in low-pressure metal organic chemical vapor deposition. A 35 pairs 1.55 μm centered InP/InGaAlAs DBRs has the stopband of more than 100 nm and the highest reflectivity of more than 99%. A VCSEL structure incorporating 35 pairs InP/InGaAlAs DBR as the bottom mirror combined with a 2λ thick periodic gain cavity and 10 pairs SiO2/TiO2 top dielectric mirrors was fabricated. The VCSELs lased at 1.56 μm by optical pumping at room temperature with the threshold pumping power of 30 mW.  相似文献   

13.
This paper refers to the implementation of a remote optical imaging system suitable for in‐situ mass transport rate measurements in the growth of crystalline layers when grown in closed cylindrical ampoules by a physical vapour transport (PVT) technique. By means of this system, the measurements are carried out by taking photographs, at regular time intervals, of the source material volume as it reduces itself because of mass transfer. After storing the photographs, in real time, in a PC, a suitable software allows to estimate the mass transport rate during the growth process. The authors report here on the detailed setting up of such system when aimed at measuring the growth rate, as it varies with time, of hexamethylenetetramine (HMT, urotropine) crystal layers. A presentation and discussion of the results of these measurements have previously been reported. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Surface properties and the principal processes at the growth of gallium nitride on GaN (0001) face in ammonia‐based are modeled using DFT (density functional theory – SIESTA code) ab initio calculations and 2‐d diffusion analysis. The GaN growth methods are: ammonia‐source MBE, MOVPE, and also HVPE. The adiabatic trajectories, calculated for hydrogen‐rich and hydrogen‐free state of the GaN(0001) surface, include the adsorption of NH3, GaCl and HCl molecules and the desorption of Ga atoms. The adsorption of ammonia and GaCl has no energy barrier. Thus, in contrast to the results concerning Plasma‐Assisted Molecular Beam Epitaxy (PA MBE), proving that the GaN(0001) surface remains in metal‐rich state, these results indicate that, in the ammonia‐rich environment, typical for HVPE and MOVP growth, the GaN(0001) surface remains in the nitrogen‐rich state. In the case of HCl adsorption, the energy barrier depends on the surface coverage, and could reach 2.0 eV. The direct desorption of single Ga atom has the energy barrier, close to 7 eV. This indicates that Ga surface diffusion (growth controlling process) length is very large, leading to strong interaction of the step kinetics and the diffusion on the terraces. This interaction leads to double–step intertwined structures both in the case of dislocation‐mediated spiral growth and in the step flow growth mode. These morphologies, proposed by the geometric arguments, are observed in the atomic force microscopy (AFM) scans of the GaN(0001) surface. Additionally we have compared the interaction energy of two hydrogen atoms obtained in the DFT SIESTA and the high precision Gaussian in coupled cluster singles, double and perturbation triples CCSD(T) approximation. Both approaches yielded virtually identical interaction energy confirming the validity of DFT analysis of ammonia‐rich growth of GaN. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
An Mg-doped p-GaN layer was grown by the metalorganic chemical vapor deposition method. The dissociation extent of hydrogen-passivated Mg acceptors in the p-GaN layer through Mg activation annealing was estimated by using room-temperature cathodoluminescence (CL) spectroscopy. The CL measurement revealed that the CL spectra intensities tend to increase with increasing the activation annealing temperature. The sample annealed at 925 °C showed the most intense emission and the narrowest width among the emission peaks. Consequently, it was the most excellent dissociation extent of Mg–H complexes caused by the Mg activation annealing. The hole concentration under this optimum condition was 1.3×1017 cm−3 at room temperature. The photoluminescence (PL) measurement showed a 2.8 eV band having characteristically a broad peak in heavily Mg-doped GaN at room temperature. By analyzing the PL results, we learned that this band was associated with the deep donor–acceptor pair (DAP) emission rather than with the emission caused by the transition from the conduction band to deep acceptor level. The four emission peaks in the resolved 2.8 eV band were emitted by transiting from deep donor levels of 0.14, 0.26, 0.40, and 0.62 eV below the conduction band to the shallow Mg acceptor level of 0.22 eV above the valence band.  相似文献   

16.
Heteroepitaxial three dimensional (3D) and two dimensional (2D) growth modes of nitride layers on sapphire substrates are discussed. It is shown that the 3D or 2D growth mode of AlGaN layers depends predominantly on the growth conditions of the underneath low temperature (LT) nucleation layer. Commonly described in literature 3D growth mode is achieved on LT GaN or AlN nucleation layer grown relatively fast. Successive growth of secondary layer at high temperature begins from separated sites, where individual 3D crystallites are formed. Threading dislocations present in crystallites bend on their facets, which reduces the quantity of dislocations. However, slight crystallographic misorientations between crystallites lead to the creation of new dislocations during coalescence of the crystallites. As a result, edge and mix dislocations appear at similar densities of about 109 cm‐2. Modification of growth conditions of LT AlN nucleation layer, especially reduction of their growth rate, leads to drastic changes in properties of the layer. Successive growth of secondary AlGaN layer at high temperature starts evenly on whole surface retaining atomic flatness. Thus growth at high temperature occurs only by 2D mode. Therefore, it is possible to grow a very thin AlGaN layers directly on top of LT nucleation layer. Such layers contain large number (1010 cm‐2) of edge dislocations, and relatively small number (less then 108 cm‐2) of mix dislocations. It is also shown that the decisive factor determining the growth mode of AlN nucleation layer is a growth of the first few atomic layers on substrate surface. The slow growth of these few first atomic layers decide about the 2D growth mode, and the fast one about the 3D one. The model explaining this difference is presented as well. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
The paper presents the results of numerical simulations and experimental measurements of the epitaxial growth of gallium nitride in Metal Organic Vapor Phase Epitaxy within a AIX‐200/4RF‐S reactor. The aim was to develop optimal process conditions for obtaining the most homogeneous crystal layer. Since there are many factors influencing the chemical reactions on the crystal growth area such as: temperature, pressure, gas composition or reactor geometry, it is difficult to design an optimal process. In this study various process pressures and hydrogen volumetric flow rates have been considered. Due to the fact that it is not economically viable to test every combination of possible process conditions experimentally, detailed 3D modeling has been used to get an overview of the influence of process parameters. Numerical simulations increased the understanding of the epitaxial process by calculating the heat and mass transfer distribution during the growth of gallium nitride. Appropriate chemical reactions were included in the numerical model which allowed for the calculation of the growth rate of the substrate. The results obtained have been applied to optimize homogeneity of GaN film thickness and its growth rate.  相似文献   

18.
In this study, we report on the enhancement in the light extraction efficiency of GaN blue LEDs topped with ZnO nanorods. The ZnO nanorods were grown by a two-step hydrothermal synthesis with pre-coated ZnO nanoparticles under optimized condition to give the appropriate size and quality, giving an increase in the light output efficiency of 66%. This improvement is attributed to the optimal rod size and spacing with improved thermal dissipation as compared to light extraction from plain GaN surface. During the ZnO growth on the LEDs, 0.55 M of NH3 was added and the ZnO sample was later annealed at 475 °C in N2 ambient, to drive out interstitial oxygen atoms from the tetrahedral unstable site. As a result, a high ratio of UV to orange defect band emission was achieved. The two-step growth of ZnO nanorods on GaN LEDs was effective in generating array of ZnO nanorods which serve as reflector to enhance light extraction from LEDs.  相似文献   

19.
This study examined the influence of strain-compensated triple AlGaN/GaN/InGaN superlattice structures (SLs) in n-GaN on the structural, electrical and optical characteristics of LEDs by analyzing the etch pits density (EPD), stress measurement, high-resolution X-ray diffraction (HRXRD), sheet resistance, photoluminescence (PL) and light–current–voltage (LIV). EPD, stress measurement and HRXRD studies showed that the insertion of AlGaN/GaN/InGaN SLs during the growth of n-GaN effectively distributed and compensated for the strong compressive stress, and decreased the dislocation density in n-GaN. The operating voltage at 20 mA for the LEDs grown with SLs decreased to 3.18 V from 3.4 V for the LEDs grown without SLs. In addition, a decrease in the spectral blue shift compared to the LEDs grown without SLs was observed in the LEDs grown with the SLs.  相似文献   

20.
Sapphire and SiC are typical substrates used for GaN growth. However, they are non-native substrates and result in highly defective materials. The use of ZnO substrates can result in perfect lattice-matched conditions for 22% indium InGaN layers, which have been found to suppress phase separation compared to the same growths on sapphire. InGaN layers were grown on standard (0 0 0 2) GaN template/sapphire and (0 0 0 1) ZnO substrates by metalorganic chemical vapor deposition. These two substrates exhibited two distinct states of strain relaxation, which have direct effects on phase separation. InGaN with 32% indium exhibited phase separation when grown on sapphire. Sapphire samples were compared with corresponding growths on ZnO, which showed no evidence of phase separation with indium content as high as 43%. Additional studies in Si-doping of InGaN films also strongly induced phase separation in the films on sapphire compared with those on ZnO. High-resolution transmission electron microscopy results showed perfectly matched crystals at the GaN buffer/ZnO interface. This implied that InGaN with high indium content may stay completely strained on a thin GaN buffer. This method of lattice matching InGaN on ZnO offers a new approach to grow efficient emitters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号