首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Undoped SnO2 thin films have been deposited on amorphous glass substrates with different precursor solution volume (10, 15, 20 and 25 ml) using simple and cost-effective nebulized spray pyrolysis technique. The influence of precursor solution on structural, optical, photoluminescence and electrical properties had been studied. The X-ray diffraction spectra prove the polycrystalline nature of SnO2 with tetragonal structure. All the films show a preferred growth orientation along (110) diffraction plane. The average transmittance of SnO2 thin films varied between 82 and 75% in the visible as well as IR region. The band gap energy decreases from 3.74 to 3.64 eV corresponding to direct transitions with the precursor solution volume had increased from 10 to 20 ml and then increased as 3.72 eV for 25 ml. SEM pictures demonstrated polyhedrons like grains. EDX confirmed the existence of Sn and O elements in all the prepared SnO2 thin films. Photoluminescence spectra at room temperature revealed that the four emission bands in all the samples such as sharp dominant peak at 361 nm with shoulder peak at 377 nm (UV region), a broad and low intensity peak at 492 nm (blue region) and 519 nm (green region). The electrical parameters were examined by Hall effect measurements, which demonstrated that the film prepared at 20 ml precursor solution volume possess minimum resistivity 2.76?×?10?3 Ω-cm with activation energy 0.10 eV and maximum figure of merit 1.54?×?10?2 (Ω/sq)?1.  相似文献   

2.
Transparent conductive tin-doped indium oxide (In2O3:Sn, ITO) thin films with various Sn-doping concentrations have been prepared using the low cost reactive thermal evaporation (RTE) technique at a low growth temperature of ~160 °C. The structural characteristics, optical and electrical properties of the ITO thin films were investigated. These polycrystalline ITO films exhibited preferential orientation along (222) plane and possessed low resistivities ranging from 3.51 to 5.71 × 10?4 Ω cm. The decreased mobility was attributed to the scattering by ionized and neutral impurities at high doping concentrations. The optimized ITO thin film deposited with 6.0 wt% Sn-doping concentration exhibited a high average transparency of 87 % in the wavelength range of 380–900 nm and a low resistivity of 3.74 × 10?4 Ω cm with a high Hall mobility of 47 cm2 V?1s?1. A hydrogenated amorphous silicon and silicon–germanium (a-Si:H/a-SiGe:H) double-junction solar cell fabricated with the RTE-grown ITO electrodes presented a conversion efficiency of 10.51 %.  相似文献   

3.
Li1.3Al0.3Ti1.7(PO4)3 films were comparatively prepared by rapid thermal annealing (RTA) and conventional furnace annealing(CFA). The phase identification and surface morphology of the prepared films were characterized by X-ray diffraction and scanning electron microscopy. The electrochemical window, ionic conductivity, activation energy, and electronic conductivity were conducted by cyclic voltammetry, electrochemical impedance spectroscopy, and four-probe technique. The results show that the films prepared by RTA and CFA are homogenous and crack-free. The film prepared by RTA shows smaller grains and is denser than the one prepared by CFA. The electrochemical windows of the two films are beyond 2.4 V. The ionic conductivities of the films prepared by RTA and CFA are 2.7?×?10?6 S cm?1 and 1.4?×?10?6 S cm?1, respectively. The activation energy of the film prepared by RTA is 0.431 eV, which is slightly smaller than the one prepared by CFA. The electronic conductivity of the two films is about 10?10 S cm?1.  相似文献   

4.
SnO2 thin films grown on glass substrates at 300 °C by reactive thermal evaporation and annealed at 600 °C were irradiated by 120 MeV Ag9+ ions. Though irradiation is known to induce lattice disorder and suppression of crystallinity, we observe grain growth at a certain fluence of irradiation. X-ray diffraction (XRD) revealed the crystalline nature of the films. The particle size estimated by Scherrer’s formula for the irradiated films was in the range 10–25 nm. The crystallite size increases with increase in fluence up to 1×1012 ions?cm?2, whereas after that the size starts decreasing. Atomic force microscope (AFM) results showed the surface modification of nanostructures for films irradiated with fluences of 1×1011 ions?cm?2 to 1×1013 ions?cm?2. The UV–visible spectrum showed the band gap of the irradiated films in the range of 3.56 eV–3.95 eV. The resistivity decreases with fluence up to 5×1012 ions?cm?2 and starts increasing after that. Rutherford Backscattering (RBS) reveals the composition of the films and sputtering of ions due to irradiation at higher fluence.  相似文献   

5.
Gelatin-HCl protonic gel polymer electrolytes were obtained by crosslinking with formaldehyde in the presence of hydrochloric acid and glycerol as plasticizer and characterized in present study. The ionic conductivity measurements revealed the best value of 5.35?×?10?5 S cm?1 at room temperature. Factorial design analysis showed that influence of glycerol is more pronounced than influence of acid on ionic conductivity values. Moreover, the 90 % transparent membranes evidenced a linear increase of ionic conductivity values of 5.35?×?10?5 S cm?1 at 26.5 °C to 5.77?×?10?4 S cm?1 at 82.8 °C following Arrhenius type mechanism of charge mobility.  相似文献   

6.
Nanocomposite biopolymer electrolyte was prepared by solution-casting technique. Carboxymethyl cellulose from kenaf bast fibre, ammonium acetate, (1-butyl)trimethyl ammonium bis(trifluoromethylsulfonyl)imide ionic liquid and silica nanofiller was used to prepare the biopolymer electrolyte samples. The films were characterized by Fourier transform infrared spectroscopy, electrochemical impedance spectroscopy, scanning electron microscopy, transference number measurement and linear sweep voltammetry. The interactions of doping salt, ionic liquid and inorganic nanofiller with the host biopolymer were confirmed by FTIR study. The highest conductivity achieved was 8.63 × 10?3 S cm?1 by the incorporation of 1 wt% of SiO2 at ambient temperature. The electrochemical stability of the highest conducting sample was stable up to 3.4 V, and the ion transference number in the film was 0.99.  相似文献   

7.
Nanocomposite polymer electrolyte (NCPE) films based on polyethylene oxide (PEO) complexed with lithium perchlorate (LiClO4) and nanosized ferroelectric ceramic fillers such as BaTiO3, SrTiO3 have been prepared using solution cast technique. The films showed very good mechanical stability when exposed to ambient atmospheres for prolonged periods. Lithium ion transport studies revealed that the conductivity is predominantly ionic. The effect of electric field on ionic conductivity of NCPE films was investigated. One order enhancement in conductivity due to the field was observed at 323 K. NCPE films exhibited conductivity of 3.46?×?10?5 Scm?1 at 323 K. NCPE films were characterized using differential scanning calorimetry (DSC) and X-ray diffraction (XRD) technique. The DSC and XRD studies revealed reduced crystallinity which confirmed the higher amorphous phase and hence the improved ionic conductivity.  相似文献   

8.
This report investigated the structural, optical and electrical properties of V-doped SnO2 thin films deposited using spray pyrolysis technique. The SnO2:V films, with different V-content, were deposited on glass substrates at a substrate temperature of 550°C using an aqueous ethanol solution consisting of tin and vanadium chloride. X-ray diffraction studies showed that the SnO2:V films were polycrystalline only with tin oxide phases and the preferred orientations are along (1 1 0), (1 0 1), (2 1 1) and (3 0 1) planes. Using Scherrer formula, the grain sizes were estimated to be within the range of 25–36 nm. The variation in sheet resistance and optical direct band gap are functions of vanadium doping concentration. Field emission scanning electron microscopy (FESEM) revealed the surface morphology to be very smooth, yet grainy in nature. Optical transmittance spectra of the films showed high transparency of about ~69–90% in the visible region, decreasing with increase in V-doping. The direct band gap for undoped SnO2 films was found to be 3.53 eV, while for higher V-doped films it shifted toward lower energies in the range of 3.27–3.53 eV and then increased again to 3.5 eV. The Hall effect and Seebeck studies revealed that the films exhibit n-type conductivity. The thermal activation energy, Seebeck coefficient and maximum of photosensitivity in the films were found to be in the range of 0.02–0.82 eV (in the low-temperature range), 0.15–0.18 mV K?1 (at T = 350 K) and 0.96–2.84, respectively.  相似文献   

9.
在室温及不同的氧氩比条件下,采用射频磁控溅射Ag层和直流磁控溅射SnO2层,在载玻片衬底上制备出了SnO2/Ag/SnO2多层薄膜.用霍尔效应测试仪、四探针电阻测试仪和紫外-可见-近红外光谱仪等表征了薄膜的电学性质和光学性质.实验结果表明:当氧氩比为1:14时,所制得的薄膜的光电性质优良指数最大,为1.69×10-2 Ω-1;此时,薄膜的电阻率为9.8×10-5 Ω·cm,方电阻为9.68 Ω/sq,在400~800 nm可见光区的平均光学透射率达85%;并且,在氧氩比为1:14时,利用射频磁控溅射Ag层和直流磁控溅射SnO2层在PET柔性衬底上制备出了光电性质优良的柔性透明导电膜,其在可见光区的平均光学透过率达85%以上,电阻率为1.22×10-4 Ωcm,方电阻为12.05 Ω/sq.  相似文献   

10.
Feroz A. Mir 《哲学杂志》2013,93(3):331-344
PrFe0.7Ni0.3O3 thin films (thickness ~ 200 nm) were prepared by pulsed laser ablation technique on LaAlO3 substrate. These films were irradiated with 200?MeV Ag15+ ions at various fluencies, ranging from 1 × 1011 to 1 × 1012 ions/cm2. These irradiated thin films were characterized by using X-ray diffraction, dc conductivity, dc magnetization and atomic force microscopy. These films exhibit orthorhombic structure and retain it even after irradiations. The crystallite size (110–137?nm), micro strain (1.48 × 10?2–1.75 × 10?2 line?2?m?4) and dislocation density (79.7 × 1014–53.2 × 1014 line/m2) vary with ion fluencies. An enhancement in resistivity at certain fluence and then a decrease in its value (0.22175–0.21813?Ω?cm) are seen. A drastic change in observed magnetism after ion irradiation is seen. With ion irradiation, an increase in surface roughness, due to the formation of hillocks and other factors, is observed. Destruction of magnetic domains after irradiation can also be visualized with magnetic force microscopy and is in close agreement with magnetization data. The impact on various physical properties in these thin films after irradiation indicates a distortion in the lattice structure and consequently on single-particle band width caused by stress-induced defects.  相似文献   

11.
S.K. Sinha  S.K. Ray 《哲学杂志》2013,93(31):3507-3521
Aluminium-doped (Al = 0–5?wt.%) SnO2 thin films with low-electrical resistivity and high optical transparency have been successfully synthesized by pulsed laser deposition technique at 500 °C. Structural, optical and electrical properties of the as-deposited and post-annealed thin films were investigated. X-ray diffraction patterns suggest that the films transform from crystalline to amorphous state with increasing aluminium content. The root mean square (Rq) surface roughness parameter, determined by atomic force microscopy decreases upon annealing of the as-deposited film. While resistivity of the film is the lowest (9.49 × 10?4 Ω-cm) at a critical doping level of 1?wt.% Al, optical transparency is the highest (nearly 90%) in the as-deposited condition. Temperature dependence of the electrical resistivity suggests that the Mott’s variable range hopping process is the dominant carrier transport mechanism in the lower temperature range (40–135 K) for all the films whereas, thermally activated band conduction mechanism seems to account for conduction in the higher temperature region (200–300 K).  相似文献   

12.
Tao Sun  Jiayu Yu  Qi Yang  Jinxin Ma 《Ionics》2017,23(5):1059-1066
Cu-supported SnO2@C composite coatings constructed by interconnected carbon-based porous branches were fabricated by annealing Cu foils with films formed by knife coating DMF solution containing SnCl2, polyacrylonitrile (PAN), and poly(methyl methacrylate) (PMMA) on their surface in vacuum. The carbon-based porous branches consist of amorphous carbon matrices, SnO2 nanoparticles with a size of 30–100 nm mainly encapsulated inside, and many micropores with a size of 1–5 nm. The three-dimensional (3D) porous network structures of the SnO2@C composite were achieved by volatilization of PMMA and pyrolysis of SnCl2. The SnO2@C composite coatings demonstrate good cyclic performance with a high reversible capacity of 642 mA h g?1 after 100 cycles at a current density of 50 mA g?1 without apparent capacity fading during cycling and excellent rate performance with a capacity of 276 mA h g?1 at a high current density up to 10 A g?1.  相似文献   

13.
Fe implanted SnO2 films (5 × 1016 and 1 × 1017 57Fe ions/cm2) characterized by conversion electron Mossbauer spectroscopy (CEMS) are reviewed. The substrate temperatures affect the growth of precipitated iron oxides. The Fe ion implanted film at room temperature (RT) shows no Kerr effect and no magnetic sextet in CEM spectra. The SnO2 film implanted with 57Fe at the substrate temperature of 300 °C show a small Kerr effect although the magnetic sextet is not observed, but post-annealing results in the disappearance of the Kerr effect. This magnetism is considered to be due to defect induced magnetism. Some samples were measured by CEMS at 15 K. SnO2 (0.1 at %Sb and 3 at %Sb) films, implanted at 500 °C and the post-annealed samples, show RT ferromagnetism due to formation of clusters of magnetite and maghemite, respectively. The layer by layer analysis of these films within 100 nm in thickness has been done by depth sensitive CEMS (DCEMS) using a He + 5 % CH4 gas counter. The structures and compositions of Fe implanted SnO2 films, and the effects due to post-annealing were investigated.  相似文献   

14.
The studies on solid polymer electrolyte (SPE) films with high ionic conductivity suitable for the realization of all solid-state Na-ion cells? form the focal theme of the work presented in this paper. The SPE films are obtained by the solution casting technique using the blend solution of poly (ethylene oxide) (PEO) with ethylene carbonate (EC) and propylene carbonate (PC) and complexed with sodium nitrate. Structural and thermal studies of SPE films are done by XRD, FTIR spectroscopy, and TGA techniques. Surface morphology of the films is studied using the FESEM. The ionic conductivity of SPE films is determined from the electrochemical impedance spectroscopy studies. For the SPE film with 16 wt% of NaNO3 used for reacting with the polymer blend of PEO with EC and PC, the ionic conductivity obtained is around 1.08 × 10?5 S cm?1. Addition of the Al2O3 as the filler material is found to enhance the ionic conductivity of the SPE films. The studies on the Al2O3 modified SPE film show an ionic conductivity of 1.86 × 10–4 S cm?1, which is one order higher than that of the SPE films without the filler content. For the SPE film dispersed with 8 wt% of Al2O3, the total ion transport number observed is around 0.9895, which is quite impressive from the perspective of the applications in electrochemical energy storage devices. From the cyclic voltammetry studies, a wide electrochemical stability window up to 4 V is observed, which further emphasizes the commendable electrochemical behavior of these SPE films.  相似文献   

15.
Biodegradable polymer electrolyte films based on poly(ε-caprolactone) (PCL) in conjunction with lithium tetrafluoroborate (LiBF4) salt and 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIMBF4) ionic liquid were prepared by solution cast technique. The structural, morphological, thermal, and electrical properties of these films were examined using X-ray diffraction (XRD), optical microscopy (OM), differential scanning calorimetry (DSC), and impedance spectroscopy. The XRD and OM results reveal that the pure PCL possesses a semi-crystalline nature and its degree of crystallinity decreases with the addition of LiBF4 salt and EMIMBF4 ionic liquid. DSC analysis indicates that the melting temperature and enthalpy are apparently lower for the 40 wt% EMIMBF4 gel polymer electrolyte as compared with the others. The ambient temperature electrical conductivity increases with increasing EMIMBF4 concentration and reaches a high value of ~2.83?×?10?4 S cm?1 for the 85 PCL:15 LiBF4 + 40 wt% EMIMBF4 gel polymer electrolyte. The dielectric constant and ionic conductivity follow the same trend with increasing EMIMBF4 concentration. The dominant conducting species in the 40 wt% EMIMBF4 gel polymer electrolyte determined by Wagner’s polarization technique are ions. The ionic conductivity of this polymer electrolyte (~2.83?×?10?4 S cm?1) should be high enough for practical applications.  相似文献   

16.
Cu2CdSnS4 (CCdTS) thin films were synthesized using chemical spray pyrolysis deposition technique. The effect of various deposition times (20, 40, 60 min) on growth of these films was investigated. The as-synthesized Cu2CdSnS4 thin films were characterized by X-ray diffraction (XRD), ultraviolet–visible (UV–Vis) spectroscopy, Raman spectroscopy and Hall Effect measurements. The XRD pattern of Cu2CdSnS4 structured in stannite phase with preferential orientations along (112) planes. Raman spectrum revealed very strong peak at about 333 cm?1. The films have the direct optical band gaps of 1.39–1.5 eV. The optimum hole mobility was found to be 3.212 × 101 cm2 v?1 s?1 for the film deposited on 60 min. The electronic structure and optical properties of the stannite structure Cu2CdSnS4 were obtained by ab initio calculations using the Korringa–Kohn–Rostoker method combined with the Coherent Potential Approximation (CPA), as well as CPA confirms our results.  相似文献   

17.
A new approach of chemical bath deposition (CBD) of SnO2 thin films is reported. Films with a 0.2 μm thickness are obtained using the multi-dip deposition approach with a deposition time as little as 8–10 min for each dip. The possibility of fabricating a transparent conducting oxide layer of Cd2SnO4 thin films using CBD is investigated through successive layer deposition of CBD-SnO2 and CBD-CdO films, followed by annealing at different temperatures. High quality films with transmittance exceeding 80% in the visible region are obtained. Annealed CBD-SnO2 films are orthorhombic, highly stoichiometric, strongly adhesive, and transparent with an optical band gap of ~4.42 eV. Cd2SnO4 films with a band gap as high as 3.08 eV; a carrier density as high as 1.7 × 1020 cm?3; and a resistivity as low as 1.01 × 10?2 Ω cm are achieved.  相似文献   

18.
Excimer-laser-assisted metal–organic deposition (ELAMOD) was used to prepare Sb-doped epitaxial (001) SnO2 thin films on (001) TiO2 substrates at room temperature. The effects of laser fluence, the number of shots with the laser, and Sb content on the electrical properties such as resistivity, carrier concentration, and carrier mobility of the films were investigated. The resistivity of the Sb-doped epitaxial (001) SnO2 thin film prepared using an ArF laser was lower than that of the film prepared using a KrF laser. The van der Pauw method was used to measure the resistivity, carrier concentration, and carrier mobility of the Sb-doped epitaxial (001) SnO2 thin films in order to determine the effect of Sb content on the electrical resistivity of the films. The lowest resistivity obtained for the Sb-doped epitaxial (001) SnO2 thin films prepared using ELAMOD with the ArF laser and 2 % Sb content was 2.5 × 10?3 Ω cm. The difference between the optimal Sb concentrations and resistivities of the films produced using either ELAMOD or conventional thermal MOD was discussed.  相似文献   

19.
Tin oxide (SnO2) thin films were deposited by electrostatic spray deposition (ESD). The structural, optical and electrical properties of the films for different solvents were studied. The morphology of the deposited thin films was investigated by scanning electron microscopy. The optical transmission spectra of the films showed 66–75% transmittance in the visible region of spectrum. The electrical resistivity of thin films deposited using the different solvents ranged 1.08 × 10?3–1.34 × 10?3 Ω-cm. Overall, EG and PG were good solvents for depositing SnO2 thin films by the ESD technique with stable cone jet.  相似文献   

20.
N-doped CuCrO2 thin films were prepared by using radio frequency magnetron sputtering technique. The XRD and XPS measurements were used to confirm the existence of the N acceptors in CuCrO2 thin films. Hall measurements show the p-type conduction for all films. The electrical conductivity increases rapidly with the increase in N doping concentration, and the maximum of the electrical conductivity of 17 S cm−1 is achieved for the film deposited with 30 vol.% N2O, which is about three orders of magnitude higher than that of the undoped CuCrO2 thin film. Upon increasing the doping concentrations the band gaps of N-doped CuCrO2 thin films increase due to the Burstein-Moss shift.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号