首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(3,4‐ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) is a widely used conductive aqueous dispersion synthesized by using emulsion polymerization method. To further enhance its solution processability and conductivity of PEDOT derivatives, we proposed to replace the nonconductive PSS with conductive poly[2‐(3thienyl)‐ethoxy‐4‐butylsulfonate] (PTEB) as surfactant for the emulsion polymerization of PEDOT. The reaction involved colloid stabilization and doping in one step, and yielded PEDOT:PTEB composite nanoparticles with high electrical conductivity. Contrary to its counterpart containing nonconductive surfactant, PEDOT: PTEB showed increasing film conductivity with increasing PTEB concentration. The result demonstrates the formation of efficient electrical conduction network formed by the fully conductive latex nanoparticles. The addition of PTEB for EDOT polymerization significantly reduced the size of composite particles, formed stable spherical particles, enhanced thermal stability, crystallinity, and conductivity of PEDOT:PTEB composite. Evidence from UV–VIS and FTIR measurement showed that strong molecular interaction between PTEB and PEDOT resulted in the doping of PEDOT chains. X‐ray analysis further demonstrated that PTEB chains were intercalated in the layered crystal structure of PEDOT. The emulsion polymerization of EDOT using conducting surfactant, PTEB demonstrated the synergistic effect of PTEB on colloid stability and intercalation doping of PEDOT during polymerization resulting in significant conductivity improvement of PEDOT composite nanoparticles. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2536–2548, 2008  相似文献   

2.
A new one‐step method of preparation of solution processable conductive polyaniline (PANI) is reported using didecyl ester of 4‐sulfophthalic acid (DESPA) as multifunctional material. It consists of inversed emulsion polymerization of aniline in water/chloroform mixture with benzoyl peroxide initiator, maleic acid (MA) as a codopant and DESPA as protonating agent, surfactant, and plasticizer. The resulting product combines reasonable conductivity (ca.0.03 S/cm) with solubility in common solvents such as tetrahydrofuran and chloroform. Elemental analysis together with spectroscopic studies show that the protonation level of emulsion polymerized PANI (0.47 per mer involving one ring and one nitrogen) is very close to that predicted for PANI in the oxidation state of emeraldine (0.5). MA is incorporated into the polymer matrix as a co‐dopant in the ratio 1:4 with respect to the DESPA dopant. PANI‐DESPA‐MA three components system shows a highly ordered, layer‐type supramolecular structure, in which planes of regularly π‐stacked PANI chains are separated by a double layer of dopants. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1051–1057, 2008  相似文献   

3.
This work is to make carbon nanotubes dispersible in both water and organic solvents without oxidation and cutting nanotube threads. Polystyrene‐singlewall carbon nanotube (PS‐SWNT) composites were prepared with three different methods: miniemulsion polymerization, conventional emulsion polymerization, and mixing SWNT with PS latex. The two factors, crosslinking and surface coverage of PS are important factors for the mechanical and electrical properties, including dispersion states of SWNT in various solvents. The PS‐SWNT composite prepared via a conventional emulsion polymerization showed SWNT bundles entirely covered with PS, whereas the PS‐SWNT composite prepared via a miniemulsion polymerization showed SWNT partially covered with crosslinked PS nanoparticles. The method of mixing SWNTs with PS latex did not show the well dispersed state of carbon nanotubes because PS was not crosslinked and was dissolved in a solvent, and nanotubes separated from PS precipitated. So the PS nanoparticle‐SWNT composite had lower electrical resistance, and higher mechanical strength than the other composites made by the latter two methods. As the amount of SWNT increases, the bare surface area of SWNT increases and the electrical conductivity increases in the composite made by the miniemulsion polymerization. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 573–584, 2006  相似文献   

4.
A simple method was used to synthesize the hybrid nanocomposites consisting of the functionalized multiwalled carbon nanotube composites (MWCNTs) with the polyaniline incorporated silver nanoparticles (a-MWCNT/PANI-Ag) through an emulsion polymerization at room temperature in order to enhance the electrical conductivity of polyaniline. The electrical conductivity of the composite with the incorporated Ag nanoparticles was 5% higher than the same weight percent for the composite without Ag nanoparticles, and the thermal stability was dramatically increased from 54% for the composite (a-MWCNT/PANI) to 69% through the incorporation of the Ag nanoparticles at 830°C. Additionally, the advantages of the Ag nanoparticles, including the improved electrical and thermal properties without damage to the polyaniline structure, were confirmed using FTIR and Raman spectroscopy.  相似文献   

5.
The present investigation describes a facile and rapid approach of conductive nanocomposites production and assesses the opportunity of their use as electro‐mechanical sensors. Hybrid materials containing silver and polyaniline nanoparticles reinforcing a thermoplastic elastomeric matrix were studied. The approach developed includes ultrasonically assisted in situ inverse emulsion polymerization of aniline oxidized by a weak oxidant and silver nitrate, and supported with a strong oxidant, ammonia peroxydisulfate. Aniline was doped with dodecylbenzene sulfonic acid in the presence of dissolved styrene–isoprene–styrene thermoplastic elastomer. While conventional polymerization of aniline with silver nitrate takes 2 weeks, by utilization of inverse emulsion polymerization, the reaction time reduces to 5 days. The assistance of a strong oxidant dramatically shortens the reaction time to 30 min. The technique developed results in uniform distribution of polyaniline/silver (PANI/Ag) conductive nanoparticles in the elastomeric matrix. The morphological studies of the films reveal spherically shaped 45 nm Ag particles. The presence of PANI/Ag in the styrene–isoprene–styrene elastomeric matrix enhances the electrical, thermal, and mechanical properties of the nanocomposites. The approach described provides an opportunity of the development of tunable structures and a remarkably distinctive architecture. A rapid electrical resistance response to an applied strain makes the nanocomposites developed useful as sensitive strain sensors. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Since the discovery of carbon nanotubes (CNTs) and intrinsically conductive polymers, such as polyaniline (PANI) some research has focused on the development of novel hybrid materials by combining CNT and PANI to achieve their complementary properties. Electrically conductive elastomer nano‐composites containing CNT and PANI are described in the present investigation. The synthesis procedure includes in‐situ inverse emulsion polymerization of aniline doped with dodecylbenzene sulfonic acid in the presence of CNT and dissolved styrene‐isoprene‐styrene (SIS) block copolymer, followed by a precipitation–filtration step. The synthesis step is carried out under ultrasonication. The resulting uniform SIS/CNT/PANI dispersions are stable for long time durations. The incorporation of CNT/PANI in the SIS elastomeric matrix improves thermal, mechanical and electrical properties of the nano‐composites. The formation of continuous three‐dimensional CNT/PANI network, assumed to be responsible for enhancement of the resulting nano‐composite properties, is observed by HRSEM. A relatively low percolation threshold of 0.4 wt.% CNT was determined. The Young's modulus of the SIS/CNT/PANI significantly increases in the presence of CNT. High electrical conductivity levels were obtained in the ternary component systems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Poly(methyl methacrylate)/multiwalled carbon nanotube (PMMA/MWCNT) microspheres were successfully prepared by in situ dispersion polymerization in an alcohol phase in which the acid‐treated MWCNTs were dispersed before polymerization. The PMMA and PMMA/MWCNT microspheres were monodisperse. The diameters of the microspheres decreased from about 11.6–6.0 μm as the MWCNT content was increased from 0 to 0.03 wt %. The morphology of the PMMA/MWCNT microspheres was investigated by scanning electron microscopy, atomic force microscopy, and transmission electron microscopy, and the experimental results showed that the MWCNTs were present both in the interior and on the surface of the microspheres. The synthesized PMMA/MWCNT microspheres were also characterized by electrical resistance measurements to analyze their electrical conductivity. They showed electrorheological (ER) fluid characteristics when they were dispersed in silicone oil. Their ER properties were confirmed by using optical microscopy to examine a suspension of the PMMA/MWCNT microspheres dispersed in insulating silicone oil to which an electric field of 2.5 kV/cm was applied. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 182–189, 2008  相似文献   

8.
Poly(acrylic acid‐co‐sodium acrylate)/zinc oxide, P(AA‐SA)/ZnO, composite latex particles were synthesized by inverse miniemulsion polymerization. The ZnO nanoparticles were prepared by hydrothermal synthesis and undergone oleic acid (OA) surface treatment. The X‐ray diffraction pattern and FT‐IR spectra characterized the crystal structure and functional groups of OA‐ZnO nanoparticles. An appropriate formulation in preparing P(AA‐SA) latex particles, ensuring the dominant in situ particle nucleation and growth, was developed in our experiment first. Sodium hydroxide was chosen as a costabilizer, because of its ability to increase the deprotonation of acylic acid and enhance the hydrophilicity of monomer, acrylic acid besides providing osmotic pressure. The growth mechanism of P(AA‐SA)/ZnO composite particles was proposed. The OA‐ZnO nanoparticles were adsorbed on or around the surface of P(AA‐SA) latex particles by hydrophobic interaction, thus enhanced the interfacial tension over latex particles. The P(AA‐SA)/ZnO composite latex particles owned better thermal stability than pure latex particles. The pH regulation capacity was excellent for both ZnO and P(AA‐SA) particles. Combining P(AA‐SA) and ZnO nanoparticles into composite particles, the performance in pH regulation and UV shielding was discussed from our experimental results. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 8081–8090, 2008  相似文献   

9.
Polyurethane/polyaniline (PU/PANI) and polyurethane‐poly(methyl methacrylate)/polyaniline (PU‐PMMA/PANI) conductive core‐shell particles were synthesized by a two‐stage polymerization process. The first stage was to produce a core of PU or PU‐PMMA via miniemulsion polymerization using sodium dodecyl sulfate (SDS) as the surfactant. The second stage was to synthesize the shell of polyaniline over the surface of core particles. Hydrogen chloride (HCl) and dodecyl benzenesulfonic acid (DBSA) were used as the dopant agents. Ammonium persulfate (APS) was used as the oxidant for the polymerization of ANI. Different concentrations of HCl, DBSA, and SDS would cause different conformations of PANI chains and thus different morphologies of PANI particles. UV–visible spectra revealed that the polaron band was blue‐shifted because of the more coiled conformation of PANI chains by increasing the concentration of DBSA. Besides, with a high concentration of DBSA, both spherical‐ and rod‐shape PANI particles were observed by transmission electron microscope, and the coverage of PANI particles onto the core surfaces was improved. The key point of formation of rod‐type PANI particles was that DBSA was served with a high concentration accompanied with the existence of HCl or SDS. The better coverage of PANI particles over the core surfaces by charging higher DBSA concentrations resulted in a higher conductivity of hybrid particles. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3902–3911, 2007  相似文献   

10.
A novel method for the synthesis of polyacrylonitrile (PAN)‐coated multiwall carbon nanotubes (MWCNTs) via a simple soap‐free emulsion polymerization is presented for the first time. The polymerization was initiated with conventional anionic ammonium persulfate (APS) at 65 °C. The modification of PAN on MWCNT surfaces was confirmed by Fourier‐transform infrared (FT‐IR) spectroscopy, X‐ray photoelectron spectra (XPS), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), and Raman spectroscopy. It is found that all the surfaces of the MWCNTs were coated by PAN chains, and the PAN coating thickness could be controlled by simply adjusting the polymerization time. The obtained PAN‐coated MWCNTs could be well dispersed in water. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2057–2062, 2010  相似文献   

11.
In this work, Fe3O4/polystyrene/poly(N‐isopropylacryl amide‐co‐methylacrylate acid) (Fe3O4/PS/P(NIPAAM‐co‐MAA)) magnetic composite latex was synthesized by the method of two stage emulsion polymerization. In this reaction system, 2,2′‐azobis(2‐methyl propionamidine) dihydrochloride (AIBA) was used as initiator to initiate the first stage reaction and second stage reaction. The Fe3O4 particles were prepared by a traditional coprecipitation method. Fe3O4 particles were surface treated by either PAA oligomer or lauric acid to form the stable ferrofluid. The first stage for the synthesis of magnetic composite latex was to synthesize PS in the presence of ferrofluid by soapless emulsion polymerization to form the Fe3O4/PS composite latex particles. Following the first stage of reaction, the second stage of polymerization was carried out by the method of soapless emulsion polymerization with NIPAAM and MAA as monomers and Fe3O4/PS latex as seeds. The magnetic composite particles, Fe3O4/PS/P(NIPAAM‐co‐MAA), were thus obtained. The mechanism of the first stage reaction and second stage reaction were investigated. Moreover, the effects of PAA and lauric acid on the reaction kinetics, morphology, and particle size distribution were studied. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3912–3921, 2007  相似文献   

12.
采用乳液法, 以过硫酸铵(APS)和次氯酸钠(NaClO)为复合氧化剂合成导电聚苯胺(PANI). 考察了NaClO 的加入与否对PANI 微观形貌与电化学性能(循环伏安和电导率)的影响, 以及APS、乳化剂十二烷基苯磺酸钠(SDBS)和NaClO的用量对PANI 电化学性能的影响. 结果表明: NaClO 的加入对PANI 的微观取向结构具有重要的影响. 与采用单一APS 合成的PANI 相比, 复合氧化剂合成的PANI 具有较高的循环伏安峰电流以及更加优异的电导率(约为前者的2.6倍). 当苯胺(An)与APS 的物质的量比(nAn:nAPS )为8:7, An 与SDBS 的物质的量比(nAn:nSDBS )为10:4, NaClO 用量为5%(质量分数)时, PANI 的各项性能指标达到最好; 紫外可见光谱和红外光谱的表征结果表明, 采用复合氧化剂并未对PANI 的分子结构产生明显的影响.  相似文献   

13.
Graphene oxide (GO)–polyaniline (PANI) composite is synthesized by in situ polymerization of aniline in the presence of GO as oxidant, resulting in highly crystalline and conductive composite. Fourier transform infrared spectrum confirms aniline polymerization in the presence of GO without using conventional oxidants. Scanning electron microscopic images show the formation of PANI nanofibers attached to GO sheets. X‐ray diffraction (XRD) patterns indicate the presence of highly crystalline PANI. The sharp peaks in XRD pattern suggest GO sheets not only play an important role in the polymerization of aniline but also in inducing highly crystalline phase of PANI in the final composite. Electrical conductivity of doped GO–PANI composite is 582.73 S m?1, compared with 20.3 S m?1 for GO–PANI obtained by ammonium persulfate assisted polymerization. The higher conductivity appears to be the result of higher crystallinity and/or chemical grafting of PANI to GO, which creates common conjugated paths between GO and PANI. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1545–1554  相似文献   

14.
We have successfully demonstrated the preparation of poly(n‐butyl acrylate)‐b‐polystyrene particles without any coagulation by two‐step emulsifier‐free, organotellurium‐mediated living radical emulsion polymerization (emulsion TERP) using poly(methacrylic acid) (PMAA)–methyltellanyl (TeMe) (PMAA30‐TeMe) (degree of polymerization of PMAA, 30) and 4,4′‐azobis(4‐cyanovaleric acid) (V‐501). The final particle size was ~30 nm and second particle nucleation was not observed throughout the polymerization. Mn increased linearly in both steps with conversion and blocking efficiency was ~75%. PDI was improved by increasing radical entry frequency into each polymer particle due to an increase of the polymerization temperature. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

15.
This communication describes an ultrasonically assisted in‐situ dynamic inverse emulsion polymerization process of aniline in the presence of multi‐walled carbon nanotubes (MWNT) in toluene. During polymerization, MWNT are coated with polyaniline (PANI), forming a core‐shell structure of nano‐wires observed by high‐resolution scanning electron microscopy (HRSEM). The PANI coating of MWNT leads to a remarkable improvement in separation and dispersion of MWNT in toluene, which otherwise would have rapidly coagulated and settled. The presented dynamic polymerization process is very fast and produces stable clear dispersions. CNT enhances both the mechanical properties and electrical conductivity of PANI. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
吕亦同  胡江磊  张龙 《应用化学》2017,34(6):636-643
报道了一种高溶解性导电聚苯胺(PANI)的制备方法,以聚2-丙烯酰胺-2-甲基丙磺酸(PAMPS)作为掺杂酸和乳化剂,利用其特有的长链、亲水性及强酸性基团效应,通过乳液聚合法一步合成出具有较高溶解性的导电聚苯胺。利用核磁共振光谱仪(NMR)、傅里叶红外光谱仪(FT-IR)和扫描电子显微镜(SEM)等技术手段对产物结构和性能进行了表征分析。结果表明,在m(苯胺)∶m(AMPS)∶m(APS)=1∶2∶1.5;AMPS质量分数为20%;APS质量分数为30%;反应时间为5 h;反应温度为5℃的条件下,聚苯胺的产率高达86%,在有机溶剂二甲基甲酰胺(DMF)中的溶解度可达0.3814 g/g,在水中的溶解度可达0.2123 g/g,电导率达5.9 S/cm。  相似文献   

17.
Doped polyaniline (PANI) was synthesized by an “in situ doping polymerization” method in the presence of different sulfonic acids, such as methanesulfonic acid (MSA), p‐methylbenzene sulfonic acid (MBSA), β‐naphthalenesulfonic acid (β‐NSA), α‐naphthalenesulfonic acid (α‐NSA), 1,5‐naphthalenedisulfonic acid (1,5‐NSA), and 2,4‐dinitronaphol‐7‐sulfonate acid (NONSA). Morphology, solubility in m‐cresol, and electrical properties of the doped PANI were measured with the variation of the molecular structure of the selected sulfonic acids. Granular morphology was obtained when the sulfonic acids without a naphthalene ring, such as MSA and MBSA, were used. Regular tubular morphology was obtained only when β‐NSA was used. The tubular morphology can be modified by changing the substitutes, the number, and location of sulfo‐group(SOH) on the naphthalene ring. These results indicated that naphthalene ring in the selected sulfonic acids plays an important role in forming the tubular morphology of the doped PANI by the “in situ doping polymerization” method. All resulting PANI salts were soluble in m‐cresol, with the solubility depending on the molecular structure of the selected dopants. Room‐temperature conductivity for the doped PANI ranges from 10−1 to 100S/cm. Temperature dependence of conductivity shows a semiconductor behavior, and it can be expressed by one dimenson Variable Range Hopping (VRH) model. 1 © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1277–1284, 1999  相似文献   

18.
We report that nano‐emulsions can be creatively used as a morphology selective synthesis method to prepare not only nano‐grains but also nano‐fibers with high selectivity. Synthesis of the two different morphological materials was demonstrated using polyaniline synthesis as a model case. Polyaniline nano‐grains were synthesized from aniline molecules in nano‐size aqueous droplets as polymerization sites whose droplets were generated by inverse water‐in‐oil nano‐emulsion use, and polyaniline nano‐fibers were synthesized from aniline in aqueous nano‐dimensional channels as polymerization sites whose channels were generated by direct oil‐in‐water nano‐emulsion use containing high population of oil droplets. Using the approaches, we successfully synthesized nano‐fibers of 60 nm diameter with 0.5 µm length and also nano‐grains having diameter of 60–80 nm. The two different polymerization sites of nano‐scale dimension were made by changing the ratio among surfactant, aqueous aniline/HCl solution, and oil, i.e. organic solvent. We found the nano‐fibers synthesized from the channels formed by the direct oil‐in‐water nano‐emulsion have higher bulk electrical conductivity than the nano‐grains which were synthesized from the droplets formed by the inverse water‐in‐oil emulsion. We also found that the emulsion use allows us to use a room temperature synthesis unlike conventional synthesis methods which require to use ice bath temperature. Physical properties of both nano‐fibers and nano‐grains synthesized were characterized by Fourier transform infrared (FTIR), UV–Vis spectra, scanning electron microscopy (SEM), and four probes conductivity measurement. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Two series of terpolymers, one of o‐/m‐toluidine and aniline with o‐aminobenzoic acid and the other of o‐/m‐toluidine and aniline with m‐aminobenzenesulfonic acid, have been synthesized by oxidative polymerization via an emulsion method with ammonium persulfate as the oxidant and HCl as the external dopant. The terpolymers exhibit excellent solubility and retain the high conductivity (∼1 S cm−1) characteristic of the unsubstituted homopolymer, polyaniline. The terpolymers also possess higher thermal stability than polyaniline. This can be attributed to the presence of internal doping groups and substituents, which introduce flexibility to the otherwise rigid polyaniline backbone. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3040–3048, 2005  相似文献   

20.
Polyaniline‐carboxylic acid functionalized multi‐walled carbon nanotube (PAni/c‐MWNT) nanocomposites were prepared in sodium dodecyl sulfate (SDS) emulsion. First, the c‐MWNTs were dispersed in SDS emulsion then the aniline was polymerized by the addition of ammonium persulfate in the absence of any added acid. SDS forms the functionalized counterion in the resulting nanocomposites. The content of c‐MWNTs in the nanocomposites varied from 0 to 20 wt%. A uniform coating of PAni was observed on the c‐MWNTs by field‐emission scanning electron microscopy (FESEM). The PAni/c‐MWNT nanocomposites have been characterized by different spectroscopic methods such as UV‐Visible, FT‐Raman, and FT‐IR. The UV‐Visible spectra of the PAni/c‐MWNT nanocomposites exhibited an additional band at around 460 nm, which implies the induced doping of the MWNTs by the carboxyl group. The FT‐IR spectra of the PAni/c‐MWNT nanocomposites showed an inverse intensity ratio of the bands at 1562 and 1480 cm?1 as compared to that of pure PAni, which reveals that the PAni in the nanocomposites is richer in quinoid units than the pure PAni. The increase in the thermal stability of conductivity of the nanocomposites was due to the network structure of nanotubes and the charge transfer between the quinoid rings of the PAni and the c‐MWNTs. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号