首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four copolyfluorenes chemically doped with 0.1 and 1 mol % 3,7‐bis[2‐thiophene‐2‐yl)‐2‐cyanovinyl]phenothiazine ( PFPhT ) or 2,5‐bis[2‐(thiophene‐2‐yl)‐2‐cyanovinyl]thiophene chromophores ( PFThT ) were synthesized using the Suzuki coupling reaction and applied in white‐light‐emitting devices. They were characterized by GPC, elemental analysis, DSC, TGA, optical spectra, and cyclic voltammetry. They exhibited good thermal stability (Td > 420 °C) and moderate glass transition temperatures (>95 °C). The PhT‐Br and ThT‐Br showed PL peaks at 586 and 522 nm (with a shoulder at 550 nm). In film state, PL spectra of the copolymers comprised emissions from the fluorene segments and the chromophores due to incomplete energy transfer. Both monomers exhibited low LUMO levels around ?3.50 to ?3.59 eV, whereas the PhT‐Br owned the higher HOMO level (?5.16 eV) due to its electron‐donating phenothiazine core. Light‐emitting diodes with a structure of ITO/PEDOT:PSS/copolymer/Ca(50 nm)/Al(100 nm) showed broad emission depending on the chromophore contents. The maximum brightness and maximum current efficiency of PFPhT2 ( PFThT1 ) device were 8690 cd/m2 and 1.43 cd/A (7060 cd/m2 and 0.98 cd/A), respectively. White‐light emission was realized by further blending PFPhT2 with poly(9,9‐dihexylfluorene) (w/w = 10/1), with the maximum brightness and maximum current efficiency being 10,600 cd/m2 and 1.85 cd/A. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 833–844, 2009  相似文献   

2.
A series of copolymers PCt‐co‐Poly(N‐vinylcarbazole) were synthesized through common radical polymerization, in which P‐Ct as a kind of mesogen‐jacketed liquid crystalline polymer was introduced, and the effects of copolymers composing variation on the optical properties of the polymers were studied. The structures and properties of the copolymers were characterized and evaluated by thermogravimetric (TGA), UV, photoluminescence (PL), cyclic voltammetry (CV), and electroluminescence (EL) analyses. All the polymers enjoy high thermal stability. PL peaks in the film show blue‐shift compared with in solutions and fluorescent quantum efficiency decreased with the N‐vinylcarbazole (nvk) content increasing, which supported the efficient energy transfer from nvk units to the oxadiazole units. CV revealed that, with the incorporation of nvk to the copolymer, these copolymers had high‐lying HOMO energy levels ranging from ?5.94 to ?6.09 eV. Single‐layer light‐emitting diodes (LEDs) with the configuration of ITO/PEDOT/PCt‐nvk/Mg:Ag/Ag were fabricated, which emit a blue light around 450 and 490 nm with a maximum luminance of 703 cd/m2. The device performance varies with the content of nvk and device configuration, with device configuration ( b ) and PCt‐nvk8 giving the best value of external quantum efficiency of 0.27%. We show here that by proper design copolymer structure and modification of device configuration can exhibit strong blue EL in higher external quantum efficiency. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1843–1851, 2008  相似文献   

3.
Two orange phosphorescent iridium complex monomers, 9‐hexyl‐9‐(iridium (III)bis(2‐(4′‐fluorophenyl)‐4‐phenylquinoline‐N,C2′)(tetradecanedionate‐11,13))‐2,7‐dibromofluorene (Br‐PIr) and 9‐hexyl‐9‐(iridium(III)bis(2‐(4′‐fluorophenyl)‐4‐methylquinoline‐N,C2′)(tetradecanedionate‐11,13))‐2,7‐dibromofluorene (Br‐MIr), were successfully synthesized. The Suzuki polycondensation of 2,7‐bis(trimethylene boronate)‐9,9‐dioctylfluorene with 2,7‐dibromo‐9,9‐dioctylfluorene and Br‐PIr or Br‐MIr afforded two series of copolymers, PIrPFs and MIrPFs, in good yields, in which the concentrations of the phosphorescent moieties were kept small (0.5–3 mol % feed ratio) to realize incomplete energy transfer. The photoluminescence (PL) of the copolymers showed blue‐ and orange‐emission peaks. A white‐light‐emitting diode with a configuration of indium tin oxide/poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate)/PIr05PF (0.5 mol % feed ratio of Br‐PIr)/Ca/Al exhibited a luminous efficiency of 4.49 cd/A and a power efficiency of 2.35 lm/W at 6.0 V with Commission Internationale de L'Eclairage (CIE) coordinates of (0.46, 0.33). The CIE coordinates were improved to (0.34, 0.33) when copolymer MIr10PF (1.0 mol % feed ratio of Br‐MIr) was employed as the white‐emissive layer. The strong orange emission in the electroluminescence spectra in comparison with PL for these kinds of polymers was attributed to the additional contribution of charge trapping in the phosphorescent dopants. © 2007 Wiley Periodicals, Inc. JPolym Sci Part A: Polym Chem 45: 1746–1757, 2007  相似文献   

4.
Novel conjugated polyfluorene copolymers, poly[9,9‐dihexylfluorene‐2,7‐diyl‐co‐(2,5‐bis(4′‐diphenylaminostyryl)‐phenylene‐1,4‐diyl)]s (PGs), have been synthesized by nickel(0)‐mediated polymerization from 2,7‐dibromo‐9,9‐dihexylfluorene and 1,4′‐dibromo‐2,5‐bis(4‐diphenylaminostyryl)benzene with various molar ratios of the monomers. Because of the incorporation of triphenylamine (TPA) moieties, PGs exhibit much higher HOMO levels than the corresponding polyfluorene homopolymers and are able to facilitate hole injection into the polymer layer from the anode electrode in light‐emitting diodes. Conventional polymeric light‐emitting devices with the configuration ITO/PEDOT:PSS/polymer/Ca/Al have been fabricated. A light‐emitting device produced with one of the PG copolymers (PG10) as the emitting layer exhibited a voltage‐independent and stable bluish‐green emission with color coordinates of (0.22, 0.42) at 5 V. The maximum brightness and current efficiency of the PG10 device were 3370 cd/m2 (at 9.6 V) and 0.6 cd/A, respectively. To realize a white polymeric light‐emitting diode, PG10 as the host material was blended with 1.0 wt % of a red‐light‐emitting polymer, poly[9,9‐dioctylfluorene‐2,7‐diyl‐alt‐2,5‐bis(2‐thienyl‐2‐cyanovinyl)‐1‐(2′‐ethylhexyloxy)‐4‐methoxybenzene‐5′,5′‐diyl] (PFR4‐S), and poly[2‐methoxy‐5‐(2′‐ethylhexyloxy)‐1,4‐phenylenevinylene] (MEH‐PPV). The device based on PG10:PFR4‐S showed an almost perfect pure white electroluminescence emission, with Commission Internationale de l'Eclairage (CIE) coordinates of (0.33, 0.36) at 8 V; for the PG10:MEH‐PPV device, the CIE coordinates at this voltage were (0.30, 0.40) with a maximum brightness of 1930 cd/m2. Moreover, the white‐light emission from the PG10:PFR4‐S device was stable even at different driving voltages and had CIE coordinates of (0.34, 0.36) at 6 V and (0.31, 0.35) at 10 V. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1199–1209, 2007  相似文献   

5.
Five new thermally robust electroluminescent fluorene‐based conjugated copolymers, including poly[2,7‐(9,9‐dioctylfluorene)‐co‐4,7‐{5,6‐bis(3,7‐dimethyloctyloxymethyl)‐2,1,3‐(benzothiadiazole)}] ( PFO‐P2C10BT ) were synthesized and used to fabricate the efficient polymer light‐emitting diodes (PLEDs). The glass transition temperatures of the polymers were found to be higher than that of poly(9,9‐dialkylfluorenes) and are in the range 113–165 °C. We fabricated PLEDs in indium‐tin oxide/PEDOT/light‐emitting polymer/cathode configurations using either double‐layer LiF/Al or triple‐layer Alq3/LiF/Al cathode structures. The new copolymers were found to have emission colors that vary from greenish blue (491 nm) to green (543 nm) depending on the copolymer composition. The maximum brightness and luminance efficiency of these PLEDs were found to be up to 5347 cd/m2 and 1.51 cd/A at 10 V, respectively. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6762–6769, 2008  相似文献   

6.
We reported a new way to synthesize single‐chain white light‐emitting polyfluorene (WPF) with an increased molecular weight using azide‐alkyne click reaction. Four basic polymers with specific end‐capping, which exhibited high‐glass transition temperatures (Tg > 100 °C) and excellent thermal stability, were used as foundations of the WPF's synthesis; a blue‐light polymer (PFB2) end‐capped with azide groups can easily react with acetylene end‐capped polymers (PFB1, PFG1, and PFR1, which are emitting blue‐, green‐ and red‐light, respectively) to form triazole‐ring linkages in polar solvents such as N,N‐dimethylforamide/toluene co‐solvent at moderate temperature of 100 °C, even without metal‐catalyst. Several WPFs that consist of these four basic polymers in certain ratios were derived, and the polymer light‐emitting diode device based on the high‐molecular weight WPF was achieved and demonstrated a maximum brightness of 7551 cd/m2 (at 12.5 V) and a maximum yield of 5.5 cd/A with Commission Internationale de l'Eclairage coordinates of (0.30, 0.33) using fine‐tuned WPF5 as emitting material. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

7.
A new series of highly phenyl‐substituted polyfluorene derivatives were synthesized and characterized. The resulting polymers were amorphous and showed excellent solubility in common organic solvents, such as chloroform, tetrahydrofuran, xylene, toluene, chlorobenzene, and so forth. All possessed satisfied thermal stability with glass‐transition temperatures (Tg's) in the range of 79–115 °C. They emitted blue light with photoluminescent (PL) maximum peaks at about 408–412 nm in thin films. The PL efficiencies of the polymer films were measured around 30–33%. The highly phenylated pendants improved the Tg of polyfluorene without forming defects in the polymers and reduced their tendency to form aggregate/excimers. Polymer light‐emitting diodes were fabricated from these polymers with the configuration of indium tin oxide/polyethylenedioxythiophene:polystyrene sulfonic acid/polymer/Ba/Al, which emitted bright blue light with maximum peaks at 418–420 nm. The maximum external quantum efficiencies of these devices were 0.41–0.6%. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2985–2993, 2004  相似文献   

8.
9.
Fabrication of polymer light‐emitting diodes based on emission from the phosphorescent molecule fac‐tris(2‐phenylpyridine) iridium doped into a poly(N‐vinyl carbazole) host are reported. For single‐layered devices with magnesium‐silver cathodes, the luminance efficiency at 20 mA/cm2 was measured as 8.7 cd/A. This efficiency could be increased by over a factor of two by incorporation of evaporated small‐molecule layers into the device structure. Significant increases in device efficiency were also obtained without these evaporated layers by modification of the electrodes. Incorporation of 3,4‐poly(ethylene dioxythiophene):poly(styrene sulfonate) at the anode improved the device efficiency but had little impact on drive voltage. Insertion of lithium fluoride at the cathode resulted in no improvement in performance for magnesium‐silver and aluminum cathodes, but a significant improvement was realized in efficiency and drive voltage for calcium‐aluminum cathodes. Excellent device performance was observed for all three cathode metals used in conjunction with cesium fluoride. Through optimization of the electrodes and emitter‐layer thickness, devices exhibiting efficiencies as high as 37.3 cd/A are realized. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2715–2725, 2003  相似文献   

10.
Two PPV‐based bipolar polymers containing 1,3,4‐oxadiazole pendant groups were synthesized via the Gilch polymerization reaction for use in light‐emitting diodes (LEDs). The resulting polymers were characterized using 1H and 13C NMR, elemental analysis, DSC, and TGA. These polymers were found to be soluble in common organic solvents and are easily spin‐coated onto glass substrates, producing high optical quality thin films without defects. The electro‐optical properties of ITO/PEDOT/polymer/Al devices based on these polymers were investigated using UV‐visible, PL, and EL spectroscopy. The turn‐on voltages of the OC1Oxa‐PPV and OC10Oxa‐PPV devices were found to be 8.0 V. The maximum brightness and luminescence efficiency of the OC1Oxa‐PPV device were found to be 544 cd/m2 at 19 V and 0.15 cd/A, respectively. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1098–1110, 2008  相似文献   

11.
During the last decade, light‐emitting diodes (LEDs) have replaced incandescent, fluorescent, and neon lamps due to their ability to produce high luminosity at low currents and voltages. LEDs are currently encapsulated by thermally curable epoxy resins. However, long periods of curing at high temperature result in high consumption of energy and require stringent process control to avoid failure of the devices. In addition, the thermal cure results in yellowing of the encapsulant, which decreases the efficiency of the LED. In recent years, photoinitiated polymerization has received much interest as it congregates a wide range of economic and ecological benefits. Cationic photoinitiators, such as diaryliodonium salts, generate Brønsted acid in situ, which initiates polymerization. The process can be triggered on demand by irradiating the mixture with light. Results from the present research reveal that cycloaliphatic epoxy monomers, photoactivated with an iodonium salt and Camphorquinone, polymerize readily under visible light irradiation (470 nm) in the absence of external heating. The partial replacement of cycloaliphatic epoxy with aromatic diglycidyl ether of bisphenol‐A (DGEBA) is an effective means of improving the refractive index of the material and consequently the efficiency of the photoemission. Visible light polymerization of DGEBA pure proceeds at a slow rate; however, it is enhanced by the increase in temperature during the polymerization of the highly reactive cycloaliphatic monomer. From results obtained in the present research, it may be concluded that visible light polymerization of epoxy monomers is a promising route for the processing of LED encapsulants. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
A new strategy to realize efficient white‐light emission from a binary fluorene‐based copolymer (PF‐Phq) with the fluorene segment as a blue emitter and the iridium complex, 9‐iridium(III)bis(2‐(2‐phenyl‐quinoline‐N,C3′)(11,13‐tetradecanedionate))‐3,6‐carbazole (Phq), as a red emitter has been proposed and demonstrated. The photo‐ and electroluminescence properties of the PF‐Phq copolymers were investigated. White‐light emission with two bands of blue and red was achieved from the binary copolymers. The efficiency increased with increasing concentration of iridium complex, which resulted from its efficient phosphorescence emission and the weak phosphorescent quenching due to its lower triplet energy level than that of polyfluorene. In comparison with the binary copolymer, the efficiency and color purity of the ternary copolymers (PF‐Phq‐BT) were improved by introducing fluorescent green benzothiadiazole (BT) unit into polyfluorene backbone. This was ascribed to the exciton confinement of the benzothiadiazole unit, which allowed efficient singlet energy transfer from fluorene segment to BT unit and avoided the triplet quenching resulted from the higher triplet energy levels of phosphorescent green emitters than that of polyfluorene. The phosphorescence quenching is a key factor in the design of white light‐emitting polyfluorene with triplet emitter. It is shown that using singlet green and triplet red emitters is an efficient approach to reduce and even avoid the phosphorescence quenching in the fluorene‐based copolymers. The strategy to incorporate singlet green emitter to polyfluorene backbone and to attach triplet red species to the side chain is promising for white polymer light‐emitting diodes. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 453–463, 2008  相似文献   

13.
We report a comparative study of two organic soluble, vinylene‐based, alternating donor–acceptor copolymers with 1,4‐(2,5‐dihexadecyloxyphenylene) as the donor; the acceptor is either a 2,5‐linked pyridine or a 5,8‐linked 2,3‐diphenylpyrido[3,4‐b]pyrazine. The polymers are synthesized via a Heck coupling methodology from a dihalo monomer and a divinyl monomer to yield number‐average molecular weights of 16,000 g/mol for the pyridine polymer (PPyrPV) and 6500 g/mol for the pyridopyrazine polymer (PPyrPyrPV), with high solubility in common chlorinated solvents and lower solubility in less polar solvents (e.g., tetrahydrofuran). Thin‐film measurements show band gaps of 2.2 and 1.8 eV for PPyrPV and PPyrPyrPV, respectively. Both polymers exhibit photoluminescence in solution and in the solid state and exhibit electroluminescence when incorporated into light‐emitting diodes. In this case, a broad red emission centered at 690 nm for PPyrPV and a near‐infrared emission centered at 800 nm for PPyrPyrPV have been observed. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1417–1431, 2005  相似文献   

14.
We report on photocrosslinkable hole‐transport polymers and their use as photodefinable hole‐transport layers in organic light‐emitting diodes. The polymers were obtained by copolymerization of bis(diarylamino)biphenyl‐based acrylate monomers with cinnamate‐functionalized acrylate moieties. Polymers with a range of redox potentials were obtained by varying the substitution patterns of the bis(diarylamino)biphenyl units. The 2 + 2 cycloaddition of the cinnamate moieties following UV irradiation renders the material insoluble. This allows for patterning of the polymer and simultaneously enables the fabrication of multilayer structures from solution. Hole mobilities were measured in these copolymers with the time‐of‐flight technique. Their performance as hole‐transport layers in light‐emitting diodes, with tris(8‐hydroxyquinolinato)aluminum as the emitter and electron‐transport layer, is evaluated. Electroluminescent devices with multiple hole‐transport layers having different ionization potentials were fabricated from solution, and the quantum efficiency of these devices was greater than that for devices based on a single hole‐transport layer. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2726–2732, 2003  相似文献   

15.
We have developed efficient white‐light‐emitting polymers through the incorporation of low‐bandgap orange‐light‐emitting benzoselenadiazole ( BSeD ) moieties into the backbone of a blue‐light‐emitting bipolar polyfluorene (PF) copolymer, which contains hole‐transporting triphenylamine and electron‐transporting oxadiazole pendent groups. By carefully controlling the concentrations of the low‐energy‐emitting species in the resulting copolymers, partial energy transfer from the blue‐fluorescent PF backbone to the orange‐fluorescent segments led to a single polymer emitting white light and exhibiting two balanced blue and orange emissions simultaneously. Efficient polymer light‐emitting devices prepared using this copolymer exhibited luminance efficiencies as high as 4.1 cd/A with color coordinates (0.30, 0.36) located in the white‐light region. Moreover, the color coordinates remained almost unchanged over a range of operating potentials. A mechanistic study revealed that energy transfer from the PF backbone to the low‐bandgap segments, rather than charge trapping, was the main operating process involved in the electroluminescence process. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2938–2946, 2007  相似文献   

16.
Two series of new copolyfluorenes ( PFTP, PFTT ) were prepared by the Suzuki coupling reaction from two green‐emitting dibromo monomers (TP‐Br, TT‐Br) based on triphenylamine unit to be applied in white light electroluminescent devices. They were characterized by molecular weight determination, elemental analysis, DSC, TGA, absorption and photoluminescence spectra, and cyclic voltammetry. The estimated actual contents of the TP and TT chromophores were lower than 7.8 mol % and 1.9 mol % for PFTP and PFTT , respectively. In film state both copolyfluorenes showed photoluminescence at 400–470 and 470–600 nm originated from fluorene segments and the chromophores, respectively, due to incomplete energy transfer. Light‐emitting diodes with a structure of ITO/PEDOT:PSS/copolymer/Ca(50 nm)/Al(100 nm) showed major emission at 493–525 nm, plus minor emission at 400–470 nm when chromophore contents were low. The maximum brightness and maximum current efficiency of PFTP2 device were 8370 cd/m2 and 1.47 cd/A, whereas those of PFTT1 device were 9440 cd/m2 and 1.77 cd/A, respectively. Tri‐wavelength white‐light emission was realized through blending PFTT1 with poly(9,9‐dihexylfluorene) and a red‐emitting iridium complex, in which the maximum brightness and CIE coordinates were 6880 cd/m2 and (0.31, 0.33), respectively. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1553–1566, 2009  相似文献   

17.
A series of novel styrene derived monomers with triphenylamine‐based units, and their polymers have been synthesized and compared with the well‐known structure of polymer of N,N′‐bis(3‐methylphenyl)‐N,N′‐diphenylbenzidine with respect to their hole‐transporting behavior in phosphorescent polymer light‐emitting diodes (PLEDs). A vinyltriphenylamine structure was selected as a basic unit, functionalized at the para positions with the following side groups: diphenylamine, 3‐methylphenyl‐aniline, 1‐ and 2‐naphthylamine, carbazole, and phenothiazine. The polymers are used in PLEDs as host polymers for blend systems with the following device configuration: glass/indium–tin–oxide/PEDOT:PSS/polymer‐blend/CsF/Ca/Ag. In addition to the hole‐transporting host polymer, the polymer blend includes a phosphorescent dopant [Ir(Me‐ppy)3] and an electron‐transporting molecule (2‐(4‐biphenyl)‐5‐(4‐tert‐butylphenyl)‐1,3,4‐oxadiazole). We demonstrate that two polymers are excellent hole‐transporting matrix materials for these blend systems because of their good overall electroluminescent performances and their comparatively high glass transition temperatures. For the carbazole‐substituted polymer (Tg = 246 °C), a luminous efficiency of 35 cd A?1 and a brightness of 6700 cd m?2 at 10 V is accessible. The phenothiazine‐functionalized polymer (Tg = 220 °C) shows nearly the same outstanding PLED behavior. Hence, both these polymers outperform the well‐known polymer of N,N′‐bis(3‐methylphenyl)‐N,N′‐diphenylbenzidine, showing only a luminous efficiency of 7.9 cd A?1 and a brightness of 2500 cd m?2 (10 V). © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3417–3430, 2010  相似文献   

18.
To study the effect of nonconjugation on polymeric and photophysical properties of thiophene‐containing polymers, new light‐emitting copolymers comprising either alternate 2,5‐diphenylthiophene and vinylene or alternate 2,5‐diphenylthiophene and aliphatic ether segments were synthesized. Both copolymers contained 2,5‐diphenylthiophene as the major chromophore and emitted a sky bluish fluorescence in dilute solution (10?2 mg/mL). With a rigid and planarity structure and the concomitant crystallinity, the former copolymer (fully conjugated) possessed a higher quantum efficiency, a higher glass‐transition temperature, and a better thermal stability. In contrast, the latter copolymer (conjugated–nonconjugated) had better solubility and provided enhanced photophysical properties for the fabricated polymeric light‐emitting diode (PLED) device: at 15 V, the maximum current and brightness were 110 mA/cm2 and 4289 cd/m2, respectively, and the electroluminescence efficiency remained constant at approximately 4.9 cd/A in a voltage range of 8 to 14 V. The existence of intramolecular/intermolecular aggregates in the latter copolymer was corroborated from the the UV–vis and photoluminescence spectra of its solutions. With an increase in solution concentration, the shape and λmax of the photoluminescence spectrum were redshifted. In a solution with a concentration as high as 10 mg/mL, the redshift was so drastic that the photoluminescence spectrum was nearly identical to that of a solid‐film. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6061–6070, 2004  相似文献   

19.
Copolyfluorenes ( PFR1 and PFR2 ), chemically doped with 0.1 and 0.025 mol % 2,5‐dihexyloxy‐1,4‐bis(2‐thienyl‐2‐cyanovinyl)benzene (MR chromophere) were synthesized by the Suzuki coupling reaction. The PFR s were used to fabricate white‐light‐emitting devices through incomplete energy transfer. Because of the low content of the MR chromophore, the optical, thermal, and electrochemical properties of the PFR s were almost identical to those of polyfluorene, except for their photoluminescent (PL) and electroluminescent (EL) properties. The copolymer films showed PL peaks at about 428 and 570 nm originating from fluorene segments and MR chromophores, respectively. Compared with the model compound ( MR ), the polymer chains extended the conjugation length of the MR chromophores and exhibited a 20–48 nm red‐shift in the emission band. In addition, the lower LUMO level of the MR (?3.27 eV) was expected to improve the electron injection. The EL devices [ITO/PEDOT:PSS/ PFR s/Ca (50 nm)/Al (100 nm)] showed a broad emission band, covering the entire visible region, with chromaticity coordinates of (0.36, 0.35) and (0.32, 0.30) for PFR1 and PFR2 devices, respectively. The emission color of the PFR2 device was very similar to that of a pure white light (0.33, 0.33); and the maximal brightness and current efficiency were 3011 cd/m2 and 1.98 cd/A, respectively, which surpass those found for polyfluorene devices (1005 cd/m2, 0.28 cd/A). A). © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3703–3713, 2008  相似文献   

20.
Novel photo‐crosslinkable hole‐transport and host materials incorporated into multilayer blue phosphorescent polymer light‐emitting diodes (Ph‐PLEDs) were demonstrated in this study. The oxetane‐containing copolymers, which function as hole‐transport layers (HTL), could be cured by UV irradiation in the presence of a cationic photoinitiator. The composition of the two monomers was varied to yield three different hole‐transporting copolymers, [Poly(9,9′‐(5‐(((4‐(7‐(4‐(((3‐methyloxetan‐3‐yl)methoxy)methyl)phenyl)octan‐3‐yl)benzyl)oxy)methyl)?1,3‐phenylene)bis(9H‐carbazole)) ( P(mCP‐Ox)‐I , ‐II , and ‐III )]. In addition, monomer 1 was copolymerized with styrene to produce copolymer P(mCP‐Ph) as a host material for bis[2‐(4,6‐difluorophenyl)pyridinato‐C2,N](picolinato)iridium(III) (FIrpic), a blue‐emitting dopant. All mCP‐based copolymers displayed high glass transition temperatures (Tg) of up to 130–140 °C and triplet energies of up to 3.00 eV. The blue Ph‐PLEDs exhibited a maximum external quantum efficiency of 2.55%, in addition to a luminous efficiency of 8.75 cd A?1 when using the device configuration of indium tin oxide/poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate)/ P(mCP‐OX)‐III / P(mCP‐Ph) :FIrpic(15 wt %)/3,3′‐[5′‐[3‐(3‐pyridinyl)phenyl][1,1′:3′,1′′‐terphenyl]‐3,3′′‐diyl]bispyridine/LiF/Al. The device bearing P(mCP‐Ox)‐III HTL, containing the highest composition of mCP unit, exhibited better performance than the other devices, which is attributed to induction of more balanced charge carriers and carrier recombination in the emissive layer. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 707–718  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号