首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用表面引发的原子转移自由基聚合法(ATRP)在聚偏二氟乙烯(PVDF)表面制备结构可控的聚甲基丙烯酸甲酯刷。通过碱处理和紫外光照溴代的方法,将ATRP引入到PVDF表面; 然后采用ATRP法将甲基丙烯酸甲酯接枝到溴代的PVDF表面。采用傅里叶变换红外光谱和X-射线光电子能谱对改性前后PVDF表面的结构进行了表征。结果表明甲基丙烯酸甲酯成功地接枝到了PVDF表面。  相似文献   

2.
Herein, we report the fabrication of glycidyl methacrylate (GMA) polymeric conjugates of shortened multi‐walled carbon nanotubes (sMWCNT). The synthesis method involves the attachment of initiator on the surface of nanotubes followed by surface initiated atom transfer radical polymerization (SI‐ATRP) of GMA from the initiator‐bound sMWCNT surface. This is achieved by the procedure consisting of three important steps: introduction of amino groups onto the sMWCNT and attachment of polymerization initiator, 2‐bromo‐2‐methylpropinonyl bromide, and polymerization of GMA. The structure and properties of the resultant polymeric conjugates were characterized by Fourier transform infrared (FT‐IR) spectroscopy, Thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X‐ray diffraction (XRD), atomic force microscopy (AFM), transmission electron microscopy (TEM) and SEM. The FT‐IR analysis of polymeric conjugates shows infrared (IR) peaks characteristic of GMA. AFM, TEM and SEM images clearly show the formation of poly(glycidyl methacrylate)(PGMA) polymer on sMWCNT surface. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Zinc antimonate nanoparticles consisting of antimony and zinc oxide were surface modified in a methanol solvent medium using triethoxysilane‐based atom transfer radical polymerization (ATRP) initiating group (i.e.,) 6‐(2‐bromo‐2‐methyl) propionyloxy hexyl triethoxysilane. Successful grafting of ATRP initiator on the surface of nanoparticles was confirmed by thermogravimetric analysis that shows a significant weight loss at around 250–410 °C. Grafting of ATRP initiator onto the surface was further corroborated using Fourier transform Infrared spectroscopy (FT‐IR) and X‐ray photoelectron spectroscopy (XPS). The surface‐initiated ATRP of methyl methacrylate (MMA) mediated by a copper complex was carried out with the initiator‐fixed zinc antimonate nanoparticles in the presence of a sacrificial (free) initiator. The polymerization was preceded in a living manner in all examined cases; producing nanoparticles coated with well defined poly(methyl methacrylate) (PMMA) brushes with molecular weight in the range of 35–48K. Furthermore, PMMA‐grafted zinc antimonate nanoparticles were characterized using Thermogravimetric analysis (TGA) that exhibit significant weight loss in the temperature range of 300–410 °C confirming the formation of polymer brushes on the surface with the graft density as high as 0.26–0.27 chains/nm2. The improvement in the dispersibility of PMMA‐grafted zinc antimonate nanoparticles was verified using ultraviolet‐visible spectroscopy and transmission electron microscopy. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

4.
Poly(oligoethylene glycol methacrylate), POEGMA, brushes were prepared by surface‐initiated atom transfer radical polymerization (SI‐ATRP) on gold‐coated silicon wafers. Prior to ATRP, the substrates were grafted by brominated aryl initiators via the electrochemical reduction of a noncommercial parent diazonium salt of the formula BF4?, +N2‐C6H4‐CH(CH3)Br. The diazonium‐modified gold plates (Au‐Br) served as macroinitiators for ATRP of OEGMA which resulted in hydrophilic surfaces (Au‐POEGMA) that could be used for two distinct objectives: (i) resistance to fouling by Salmonella Typhimurium; (ii) specific recognition of the same bacteria provided that the POEGMA grafts are activated by anti‐Salmonella. The Au‐POEGMA plates were characterized by XPS, polarization modulation‐infrared reflection‐absorption spectroscopy (PM‐IRRAS) and contact angle measurements. Both Beer‐Lambert equation and Tougaard's QUASES software indicated a POEGMA thickness that exceeds the critical ~10 nm value necessary for obtaining a hydrophilic polymer with effective resistance to cell adhesion. The Au‐POEGMA slides were further activated by trichlorotriazine (TCT) in order to covalently bind anti‐Salmonella antibodies (AS). The antibody‐modified Au‐POEGMA specimens were found to specifically attach Salmonella Typhimurium bacteria. This work is another example of the diazonium salt/ATRP process to provide biomedical polymer surfaces. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
A variety of polymer microspheres were successfully synthesized by the surface‐initiated atom transfer radical polymerization (SI‐ATRP) of monomers by using monodisperse polymer microsphere having benzyl halide moiety as a multifunctional polymeric initiator. First, a series of monodisperse polymer microsphere having benzyl chloride with variable monomer ratio (P(St‐DVB‐VBC)) were synthesized by the precipitation polymerization of styrene (St), divinylbenzene (DVB), and 4‐vinylbenzyl chloride (VBC). Next, hairy polymer microspheres were synthesized by the surface‐initiated ATRP of various monomers with P(St‐DVB‐VBC) microsphere as a multifunctional polymeric initiator. The hair length determined by the SEC analysis of free polymer was increased with the increase of M/I. These hairy polymer microspheres were characterized by SEM, FT‐IR, and Cl content measurements. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1296–1304  相似文献   

6.
A series of superhydrophobic poly(methacryloxypropyltrimethoxysilane, MPTS‐b‐2,‐2,3,3,4,4,4‐heptafluorobutyl methacrylate, HFBMA)‐grafted silica hybrid nanoparticles (SiO2/PMPTS‐b‐PHFBMA) were prepared by two‐step surface‐initiated atom transfer radical polymerization (SI‐ATRP). Under the adopted polymerization conditions in our previous work, the superhydrophobic property was found to depend on the SI‐ATRP conditions of HFBMA. As a series of work, in this present study, the effects of polymerization conditions, such as the initiator concentration, the molar ratio of monomer and initiator, and the polymerization temperature on the SI‐ATRP kinetics and the interrelation between the kinetics and the surface properties of the nanoparticles were investigated. The results showed that the SI‐ATRP of HFBMA was well controlled. The results also showed that both the surface microphase separation and roughness of the hybrid nanoparticles could be strengthened with the increase of the molecular weight of polymer‐grafted silica hybrid nanoparticles. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

7.
An efficient and novel one‐pot process is developed to immobilize the atom transfer radical polymerization (ATRP) initiators onto the surface of fully pyrolyzed carbon hard spheres (CHSs) via a radical trapping process from the in situ thermal decomposition of bis(bromomethylbenzoyl)peroxide. The CHSs do not require any additional preparative treatment prior to the initiator immobilization. Styrene and methyl methacrylate are polymerized onto initiator‐immobilized CHSs by surface‐initiated atomic transfer radical polymerization (SI‐ATRP). Samples are characterized using Fourier transform infrared, thermogravimetric analysis, scanning electron microscopy, and transmission electron microscopy. These methods of characterization confirmed that all the CHSs are coated with a uniform layer of grafted polymer. This efficient, one‐pot immobilization of ATRP‐initiators represents an exceptionally simple route for the rapid preparation of various polymer‐coated carbon‐based nanomaterials using SI‐ATRP. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3314–3322  相似文献   

8.
We present herein a simple method for enhancing the emission of DNA intercalators in homogeneous nanobiohybrids of unlabeled oligonucleotides and unmodified gold nanoparticles (GNPs). Pristine single‐stranded DNA (ss‐DNA) has been wrapped around unmodified GNPs to induce metal‐enhanced fluorescence (MEF) of DNA intercalators, such as ethidium bromide and propidium iodide. The thickness of the ss‐DNA layer on the gold nanosurface determines the extent of MEF, since this depends on the position of the intercalator in relation to the metal surface. Presumably, at a suitable thickness of this DNA layer, more of the intercalator is localized at the optimum distance from the nanoparticle to give rise to MEF. Importantly, no external spacer or coating agent was needed to induce the MEF effect of the GNPs. The concentration ratios of Au to DNA in the nanohybrids, as well as the capping agents applied to the GNPs, play key roles in enhancing the emission of the intercalators. The dimensions of both components of the nanobiohybrids, that is, the size of the GNPs and the length of the oligonucleotide, have considerable influences on the emission enhancement of the intercalators. Emission intensity increased with increasing size of the GNPs and length of the oligonucleotide only when the DNA efficiently wrapped the nanoparticles. An almost 100 % increment in the quantum yield of ethidium bromide was achieved with the GNP–DNA nanobiohybrid compared with that with DNA alone (in the absence of GNP), and the fluorescence emission was enhanced by 50 % even at an oligonucleotide concentration of 2 nM . The plasmonic effect of the GNPs in the emission enhancement was also established by the use of similar nanobioconjugates of ss‐DNA with nonmetallic carbon nanoparticles and TiO2 nanoparticles, with which no increase in the fluorescence emission of ethidium bromide was observed.  相似文献   

9.
The deposition of polyallylamine (PAA) adlayers by pulsed plasma polymerization on various types of polymeric substrates has been explored as a general route to amino functionalized polymeric surfaces. These amino groups are highly suitable for anchoring an atom transfer radical polymerization (ATRP) initiator via a robust amide linkage. Subsequent surface initiated ATRP (SI‐ATRP) of monomethoxy oligo(ethylene glycol) methacrylate (MeOEGMA) resulted in polyMeOEGMA brush grafted polymer surfaces. This combined strategy of pulsed plasma polymerization with SI‐ATRP was demonstrated for five different polymeric substrates namely polyether ether ketone (PEEK), polyethylene terephthalate (PET), polyimide (PI), polypropylene (PP), and polytetrafluoroethylene (PTFE). Analysis of brush layers by attenuated total reflection infrared (ATR‐IR) spectroscopy as well as X‐ray photoelectron spectroscopy (XPS) fully corroborated the success of the proposed strategy for all substrate types.

  相似文献   


10.
The effect of the surface chemistry of gold nanoparticles (GNPs) on the GNP-amine (-NH(2)) interaction was investigated via conjugating an amine probe--1-methylaminopyrene (MAP) chromophore--with three Au colloidal samples of the same particle size yet different surface chemistry. The surface of laser-irradiated and ligand-exchanged-irradiated GNPs is covered with acetonedicarboxylic ligands (due to laser-introduced citrate oxidization) and citrate ligands, respectively, and both surfaces contain oxidized Au species which are essentially lacking for the citrate-capped GNPs prepared by the pure chemical approach. Both laser-irradiated samples show inferior adsorption capacity of MAP as compared with the purely chemically prepared GNPs. Detailed investigations indicate that MAP molecules mainly complex directly with Au atoms via forming Au-NH(2)R bonds, and the oxidization of the GNP surface strongly influences the ratio of this direct bonding to the indirect bonding originating from the electrostatic interaction between protonated amine (-NH(3)(+)) and negatively charged surface ligands. The impact of the oxidized GNP surface associated with the laser treatment is further confirmed by aging experiment on GNP-MAP conjugation systems, which straightforwardly verifies that the surface oxidation leads to the decrease in the MAP adsorption on GNPs.  相似文献   

11.
Poly(ethylene terephthalate) (PET) is a semiaromatic thermoplastic polyester used in many fields. For specific applications, controlled of the surface wettability (hydrophily/hydrophoby) could be a great challenge. Aminolysis of PET surfaces with branched polyethylenimine gives amino functional groups on the surface with high grafting density. Then, in a second step, atom transfer radical polymerization (ATRP) initiator was grafted by reaction with 2‐bromoisobutyryl bromide. Surface initiated ATRP of 2‐lactobionamidoethyl methacrylate (LAMA) was performed in solution in the presence of a sacrificial initiator or an appropriate amount of Cu(II) species that act as deactivator. The efficiency of all reactions was confirmed by X‐ray photoelectron spectroscopy. Wetting properties and surface energy were found to vary systematically depending to the type of functionalization and grafting. The quantity of grafted carbohydrate was determined by phenol/sulfuric acid colorimetric titration. The sugar graft density was observed to vary according to the ratio (monomer)/(free initiator). High graft density could be obtained yielding to superhydrophilic polymer brushes. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2689–2697  相似文献   

12.
Pristine carbon black was oxidized with nitric acid to produce carboxyl group, and then the carboxyl group was consecutively treated with thionyl chloride and glycol to introduce hydroxyl group. The hydroxyl group on the carbon black surface was reacted with 2‐bromo‐2‐methylpropionyl bromide to anchor atom transfer radical polymerization (ATRP) initiator. The ATRP initiator on carbon black surface was verified by TGA, FTIR, EDS, and elemental analysis. Then, poly (methyl methacrylate) and polystyrene chains were respectively, grown from carbon black surface by surface‐initiated atom transfer radical polymerization (SI‐ATRP) using CuCl/2,2‐dipyridyl (bpy) as the catalyst/ligand combination at 110 °C in anisole. 1H NMR, TGA, TEM, AFM, DSC, and DLS were used to systemically characterize the polymer‐grafted carbon black nanoparticles. Dispersion experiments showed that the grafted carbon black nanoparticles had good solubilities in organic solvents such as THF, chloroform, dichloromethane, DMF, etc. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3451–3459, 2007  相似文献   

13.
Poly(siloxane‐fluoroacrylate)‐grafted silica hybrid nanoparticles were prepared by surface‐initiated atom transfer radical polymerization (SI‐ATRP). The silica nanoparticles with α‐bromo‐ester initiator group for copper‐mediated ATRP were prepared by the self‐assembled monolayers of (3‐aminopropyl)triethoxysilane and 2‐bromoisobutyrate bromide. Well‐defined diblock copolymer brushes consisting of poly(methacryloxypropyltrimethoxysilane) and poly(2,2,3,3,4,4,4‐heptafluorobutyl methacrylate) blocks were obtained by using initial homopolymer brushes as the macroinitiators for the SI‐ATRP of the second monomer. Chemical compositions and structures of the nanoparticles were characterized by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, and gel permeation chromatography. Surface properties and morphology of the nanoparticles were investigated with X‐ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy, and water contact angle measurement. It is revealed that the surfaces of the nanocomposites are rough at the microscale and nanoscale. The formation reason of the superhydrophobic surfaces was also discussed in this work. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

14.
Chaozhan Wang  Sa Zhao  Yinmao Wei 《中国化学》2012,30(10):2473-2482
Poly(glycidylmethacrylate) (PGMA) brushes were grafted from chloromethylated polysulfone (CMPSF) membrane surface by surface‐initiated atom transfer radical polymerization (SI‐ATRP), and the grafting was followed by hydrolysis of epoxy groups in the grafting chains to improve the membrane's hydrophilic property. Fourier transform infrared spectroscopy (FT‐IR) and X‐ray photoelectron spectroscopy (XPS) measurements confirmed the successful grafting and hydrolysis of PGMA. The grafting degree of the monomer, measured by periodic acid titration and gravimetric analysis, increased linearly with the polymerization time, while the static water contact angle of the membrane grafted with PGMA or hydrolyzed PGMA linearly decreased. In comparison with the PGMA‐grafted membranes, the hydrolyzed PGMA‐grafted membranes possess stronger hydrophilicity as indicated by their contact angle and hydration capacity, and as a result they have an improved antifouling property. Therefore, the control of the hydrophilicity of PSF membrane could be realized through adjusting the polymerization time and transforming the functional groups in the grafting chain.  相似文献   

15.
A novel immunosensing strategy based on surface‐initiated atom‐transfer radical polymerization (SI‐ATRP) in combination with electrochemical detection is proposed. Specifically, 4‐acetoxystyrene (AS) has been chosen as a monomer for ATRP due to its ability to provide acetoxyl groups, which can be converted into phenolic hydroxyl groups for electrochemical detection in the presence of tyrosinase. A controlled radical polymerization reaction of 4‐acetoxystyrene at 60 °C was triggered after immobilization of initiator molecules on an electrode surface. The growth of long‐chain polymeric materials increased the concentration of phenolic hydroxyl groups, which in turn significantly enhanced the electrochemical signal output. Polymerization conditions, such as temperature and duration, monomer concentration, and the catalyst/monomer ratio have been optimized. The in situ surface‐initiated ATRP was confirmed by scanning electron microscope (SEM) images and X‐ray photoelectron spectroscopy (XPS) analysis. Cyclic voltammetric investigation revealed a pair of well‐defined oxidation and reduction peaks at 0.232 and 0.055 V, which corresponded to the redox behavior of catechol/o‐quinone on the electrode surface. The proposed approach has been successfully extended to immune recognition. A detection limit of 0.3 ng mL?1 for rabbit immunoglobulin G (IgG) as a model antigen has been achieved. Despite the limited availability of the IgG antibody, this technology might also be expanded to the detection of other proteins and DNA.  相似文献   

16.
Surface‐initiated atom transfer radical polymerization (SI‐ATRP) is successfully applied to electrospun constructs of poly(L ‐lactide). ATRP macroinitiators are adsorbed through polyelectrolyte complexation following the introduction of negative charges on the polyester surface through its blending with a six‐armed carboxy‐terminated oligolactide. SI‐ATRP of glycerol monomethacrylate (GMMA) or 2‐(N,N‐diethylamino)ethyl methacrylate (DEAEMA) allows then to grow surface films with controllable thickness, and in this way also to control the wetting and interactions of the construct.  相似文献   

17.
A polymer with many pendent galactose residues was prepared by atom-transfer radical polymerization (ATRP) of galactose-carrying vinyl monomer, 2-lactobionamidoethyl methacrylate (LAMA), with a disulfide-carrying ATRP initiator, 2-(2'-bromoisobutyroyl)ethyl disulfide (DT-Br). The galactose-carrying polymer obtained (DT-PLAMA) was accumulated as a polymer brush via Au-S bond on a colloidal gold monolayer deposited on a cover glass. For comparison, a disulfide which carried one galactose residue at both ends (2-lactobionamidoethyl disulfide, Cys-Lac) was accumulated as a self-assembled monolayer (SAM) on the colloidal gold monolayer, too. The association and dissociation processes of galactose residues on the colloidal gold with a lectin, Ricinus communis agglutinin (RCA(120)), were observed by the increase and decrease in absorbance at 550nm corresponding to localized surface plasmon resonance (LSPR) phenomena. The Cys-Lac SAM-carrying glass chip showed a strong non-specific adsorption of the lectin, whereas the DT-PLAMA brush-carrying one reversibly associated with the lectin, indicating reusability of the latter device. The apparent association constant of the lectin with the galactose residues in the DT-PLAMA brush was much larger than the association constant for free galactose, and the detection limit of RCA(120) by the glycopolymer brush-modified device was satisfactorily low. Furthermore, a microscopic observation clearly indicated that the DT-PLAMA brush could reversibly associate with a HepG2 cell having galactose receptors, though these processes could not be observed spectrophotometrically due to a gigantic size of the cell.  相似文献   

18.
Functionalizing biosourced materials is a major topic in the field of materials science. In particular, grafting polymerization techniques have been employed to change the surface properties of various substrates. Here, we report on the grafting of amphiphilic block copolymers in lignocellulosic materials using surface‐initiated activators generated by electron transfer atomic transfer radical polymerization (SI‐AGET‐ATRP). With this modification, it is possible to combine the interesting properties (anisotropy and high mechanical stability) of lightweight lignocellulosic materials, such as wood, with the special properties of the grafted block copolymers. Hydroxyl groups on wood cell wall biopolymers were used for the chemical bonding of an alkyl bromide as the initiator for AGET‐SI‐ATRP of a highly hydrophilic monomer ([2‐(methacryloyloxy)ethyl]trimethylammonium chloride) and a highly hydrophobic fluorinated monomer (2,2,3,3,4,4,5,5‐octafluoropentyl methacrylate). The successful grafting of homopolymers and block copolymers onto the wood structure was confirmed through Fourier transform infrared and Raman spectroscopy. The functionalization with the two homopolymers yielded lignocellulosic materials with opposite wettabilities, whereas by the adjustment of the ratio between the two copolymer blocks, it was possible to tune the wettability between these two extremes. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 885–897  相似文献   

19.
It is known that the size of gold nanoparticles (GNPs) is not the only determining factor in the uptake by cells such as cancer cells. The surface functionalization plays a crucial role, in particular the nature of the ligand as well as the molecular weight and the grafting density. Here, poly(2‐hydroxy ethyl) acrylate (pHEA) with molecular weights ranging from 10, 20 to 39 g mol?1 via reversible addition–fragmentation chain transfer polymerization is synthesized. These polymers are used directly to coat GNPs with sizes of 20, 40, and 70 nm as the trithiocarbonate functionality can strongly bind to the gold surface. The library of nine GNP is found to be nontoxic against lung carcinoma cells A549 and has negligible albumin protein absorption as determined by quartz crystal microbalance. Laser scanning confocal microscopy and flow cytometry reveal that GNP coated with medium length pHEA displays the highest cellular uptake while the effect of the size is not statistically significant. In contrast, multicellular tumor spheroids, which is a 3D model that simulates the tissue, enable the penetration of GNP coated with the longest pHEA chain while it also appears that smaller GNPs have now a clear advantage.  相似文献   

20.
Hybrid nanoarchitecture of tailor‐made Poly(ethyl acrylate)/clay was prepared by surface‐initiated atom transfer radical polymerization (SI‐ATRP), by tethering ATRP initiator on active hydroxyl group, present in surface as well as in the organic modifier of the clay used. Extensive exfoliation was facilitated by using these initiator modified clay platelets. Poly(ethyl acrylate) chains with controlled polymerization and narrow polydispersities were forced to be grown from within the clay gallery (intergallery) as well as from the outer surface (extragallery) of the clay platelets. The polymer chains attached onto clay surfaces might have the potential to provide the composites with enhanced compatibility in blends with common polymers. Attachment of the initiator on clay platelets was confirmed by Fourier transform infrared spectroscopy (FTIR), X‐ray photoelectron spectroscopy (XPS), elemental analysis, Wide‐angle X‐ray diffraction (WAXD), and microscopic analysis. Finally, end group analysis (by Matrix‐Assisted Laser Desorption Ionization Mass Spectrometry, and chain extension experiment) of the cleaved polymer and morphological study (by WAXD, Transmission Electron Microscopy), performed on the polymer grafted clays examined the effect of grafting on the efficiency of polymerization and the degree of dispersion of clay tactoids in polymer. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5014–5027, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号