首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The NP‐hard graph bisection problem is to partition the nodes of an undirected graph into two equal‐sized groups so as to minimize the number of edges that cross the partition. The more general graph l‐partition problem is to partition the nodes of an undirected graph into l equal‐sized groups so as to minimize the total number of edges that cross between groups. We present a simple, linear‐time algorithm for the graph l‐partition problem and we analyze it on a random “planted l‐partition” model. In this model, the n nodes of a graph are partitioned into l groups, each of size n/l; two nodes in the same group are connected by an edge with some probability p, and two nodes in different groups are connected by an edge with some probability r<p. We show that if prn−1/2+ϵ for some constant ϵ, then the algorithm finds the optimal partition with probability 1− exp(−nΘ(ε)). © 2001 John Wiley & Sons, Inc. Random Struct. Alg., 18: 116–140, 2001  相似文献   

2.
The family of well-orderly maps is a family of planar maps with the property that every connected planar graph has at least one plane embedding which is a well-orderly map. We show that the number of well-orderly maps with n nodes is at most 2αn+O(logn), where α≈4.91. A direct consequence of this is a new upper bound on the number p(n) of unlabeled planar graphs with n nodes, log2p(n)≤4.91n. The result is then used to show that asymptotically almost all (labeled or unlabeled), (connected or not) planar graphs with n nodes have between 1.85n and 2.44n edges. Finally we obtain as an outcome of our combinatorial analysis an explicit linear-time encoding algorithm for unlabeled planar graphs using, in the worst-case, a rate of 4.91 bits per node and of 2.82 bits per edge.  相似文献   

3.
Counting labelled planar graphs, and typical properties of random labelled planar graphs, have received much attention recently. We start the process here of extending these investigations to graphs embeddable on any fixed surface S. In particular we show that the labelled graphs embeddable on S have the same growth constant as for planar graphs, and the same holds for unlabelled graphs. Also, if we pick a graph uniformly at random from the graphs embeddable on S which have vertex set {1,…,n}, then with probability tending to 1 as n→∞, this random graph either is connected or consists of one giant component together with a few nodes in small planar components.  相似文献   

4.
We study the phase transition of the minimum degree multigraph process. We prove that for a constant hg ≈︁ 0.8607, with probability tending to 1 as n, the graph consists of small components on O(log n) vertices when the number of edges of a graph generated so far is smaller than hgn, the largest component has order roughly n2/3 when the number of edges added is exactly hgn, and the graph consists of one giant component on Θ(n) vertices and small components on O(log n) vertices when the number of edges added is larger than hgn. © 2007 Wiley Periodicals, Inc. Random Struct. Alg., 2007  相似文献   

5.
Limiting distributions are derived for the sparse connected components that are present when a random graph on n vertices has approximately 1/2n edges. In particular, we show that such a graph consists entirely of trees, unicyclic components, and bicyclic components with probability approaching √2/3 cosh √5/18 ≈ 0.9325 as n→∞. The limiting probability that it is consists of trees, unicyclic components, and at most one another component is approximately 0.9957; the limiting probability that it is planar lies between 0.987 and 0.9998. When a random graph evolves and the number of edges passes 1/2n, its components grow in cyclic complexity according to an interesting Markov process whose asymptotic structure is derived. The probability that there never is more than a single component with more edges than vertices, throughout the veolution, approaches 5 π/18 ≈ 0.8727. A “uniform” model of random graphs, which allows self-loops and multiple edges, is shown to lead to formulas that are substanitially simpler than the analogous formulas for the classical random graphs of Erdõs and Rényi. The notions of “excess” and “deficiency,” which are significant characteristics of the generating function as well as of the graphs themselves, lead to a mathematically attractive structural theory for the uniform model. A general approach to the study of stopping configurations makes it possible to sharpen previously obtained estimates in a uniform manner and often to obtain closed forms for the constants of interest. Empirical results are presented to complement the analysis, indicating the typical behavior when n is near 2oooO. © 1993 John Wiley & Sons, Inc.  相似文献   

6.
An edge of a 5‐connected graph is said to be contractible if the contraction of the edge results in a 5‐connected graph. Let x be a vertex of a 5‐connected graph. We prove that if there are no contractible edges whose distance from x is two or less, then either there are two triangles with x in common each of which has a distinct degree five vertex other than x, or there is a specified structure called a K4?‐configuration with center x. As a corollary, we show that if a 5‐connected graph on n vertices has no contractible edges, then it has 2n/5 vertices of degree 5. © 2008 Wiley Periodicals, Inc. J Graph Theory 60: 99–129, 2009  相似文献   

7.
We consider random walks on several classes of graphs and explore the likely structure of the vacant set, i.e. the set of unvisited vertices. Let Γ(t) be the subgraph induced by the vacant set of the walk at step t. We show that for random graphs Gn,p (above the connectivity threshold) and for random regular graphs Gr,r ≥ 3, the graph Γ(t) undergoes a phase transition in the sense of the well‐known ErdJW‐RSAT1100590x.png ‐Renyi phase transition. Thus for t ≤ (1 ‐ ε)t*, there is a unique giant component, plus components of size O(log n), and for t ≥ (1 + ε)t* all components are of size O(log n). For Gn,p and Gr we give the value of t*, and the size of Γ(t). For Gr, we also give the degree sequence of Γ(t), the size of the giant component (if any) of Γ(t) and the number of tree components of Γ(t) of a given size k = O(log n). We also show that for random digraphs Dn,p above the strong connectivity threshold, there is a similar directed phase transition. Thus for t ≤ (1 ‐ ε)t*, there is a unique strongly connected giant component, plus strongly connected components of size O(log n), and for t ≥ (1 + ε)t* all strongly connected components are of size O(log n). © 2012 Wiley Periodicals, Inc. Random Struct. Alg., 2012  相似文献   

8.
The edges of the complete graph on n vertices can be covered by ⌈lg n⌉ spanning complete bipartite subgraphs. However, the sum of the number of edges in these subgraphs is roughly (n2/4)lg n, while a cover consisting of n − 1 spanning stars uses only (n − 1)2 edges. We will show that the covering by spanning stars has the smallest total number of edges among all coverings of the clique by spanning complete bipartite subgraphs, except when n is 4 or 8. © 1998 John Wiley & Sons, Inc. J Graph Theory 27: 223–227, 1998  相似文献   

9.
We consider the random 2‐satisfiability (2‐SAT) problem, in which each instance is a formula that is the conjunction of m clauses of the form xy, chosen uniformly at random from among all 2‐clauses on n Boolean variables and their negations. As m and n tend to infinity in the ratio m/n→α, the problem is known to have a phase transition at αc=1, below which the probability that the formula is satisfiable tends to one and above which it tends to zero. We determine the finite‐size scaling about this transition, namely the scaling of the maximal window W(n, δ)=(α?(n,δ), α+(n,δ)) such that the probability of satisfiability is greater than 1?δ for α<α? and is less than δ for α>α+. We show that W(n,δ)=(1?Θ(n?1/3), 1+Θ(n?1/3)), where the constants implicit in Θ depend on δ. We also determine the rates at which the probability of satisfiability approaches one and zero at the boundaries of the window. Namely, for m=(1+ε)n, where ε may depend on n as long as |ε| is sufficiently small and |ε|n1/3 is sufficiently large, we show that the probability of satisfiability decays like exp(?Θ(nε3)) above the window, and goes to one like 1?Θ(n?1|ε|?3 below the window. We prove these results by defining an order parameter for the transition and establishing its scaling behavior in n both inside and outside the window. Using this order parameter, we prove that the 2‐SAT phase transition is continuous with an order parameter critical exponent of 1. We also determine the values of two other critical exponents, showing that the exponents of 2‐SAT are identical to those of the random graph. © 2001 John Wiley & Sons, Inc. Random Struct. Alg., 18: 201–256 2001  相似文献   

10.
Suppose that a random graph begins with n isolated vertices and evolves by edges being added at random, conditional upon all vertex degrees being at most 2. The final graph is usually 2‐regular, but is not uniformly distributed. Some properties of this final graph are already known, but the asymptotic probability of being a Hamilton cycle was not known. We answer this question along with some related questions about cycles arising in the process. © 2006 Wiley Periodicals, Inc. Random Struct. Alg., 2007  相似文献   

11.
A clique is a set of pairwise adjacent vertices in a graph. We determine the maximum number of cliques in a graph for the following graph classes: (1) graphs with n vertices and m edges; (2) graphs with n vertices, m edges, and maximum degree Δ; (3) d-degenerate graphs with n vertices and m edges; (4) planar graphs with n vertices and m edges; and (5) graphs with n vertices and no K5-minor or no K3,3-minor. For example, the maximum number of cliques in a planar graph with n vertices is 8(n − 2). Research supported by a Marie Curie Fellowship of the European Community under contract 023865, and by the projects MCYT-FEDER BFM2003-00368 and Gen. Cat 2001SGR00224.  相似文献   

12.
We study the largest component of a random (multi)graph on n vertices with a given degree sequence. We let n. Then, under some regularity conditions on the degree sequences, we give conditions on the asymptotic shape of the degree sequence that imply that with high probability all the components are small, and other conditions that imply that with high probability there is a giant component and the sizes of its vertex and edge sets satisfy a law of large numbers; under suitable assumptions these are the only two possibilities. In particular, we recover the results by Molloy and Reed on the size of the largest component in a random graph with a given degree sequence. We further obtain a new sharp result for the giant component just above the threshold, generalizing the case of G(n,p) with np = 1 + ω(n)n?1/3, where ω(n) → arbitrarily slowly. Our method is based on the properties of empirical distributions of independent random variables, and leads to simple proofs. © 2008 Wiley Periodicals, Inc. Random Struct. Alg., 2009  相似文献   

13.
A dominating set in a graph G is a connected dominating set of G if it induces a connected subgraph of G. The connected domatic number of G is the maximum number of pairwise disjoint, connected dominating sets in V(G). We establish a sharp lower bound on the number of edges in a connected graph with a given order and given connected domatic number. We also show that a planar graph has connected domatic number at most 4 and give a characterization of planar graphs having connected domatic number 3.  相似文献   

14.
We consider the problem of finding a sparse set of edges containing the minimum spanning tree (MST) of a random subgraph of G with high probability. The two random models that we consider are subgraphs induced by a random subset of vertices, each vertex included independently with probability p, and subgraphs generated as a random subset of edges, each edge with probability p. Let n denote the number of vertices, choose p ∈ (0, 1) possibly depending on n, and let b = 1/(1 ? p). We show that in both random models, for any weighted graph G, there is a set of edges Q of cardinality O(n logbn) that contains the minimum spanning tree of a random subgraph of G with high probability. This result is asymptotically optimal. As a consequence, we also give a bound of O(kn) on the size of the union of all minimum spanning trees of G with some k vertices (or edges) removed. More generally, we show a bound of O(n logbn) on the size of a covering set in a matroid of rank n, which contains the minimum‐weight basis of a random subset with high probability. Also, we give a randomized algorithm that calls an MST subroutine only a polylogarithmic number of times and finds the covering set with high probability. © 2005 Wiley Periodicals, Inc. Random Struct. Alg., 2006  相似文献   

15.
We consider the shotgun assembly problem for a random jigsaw puzzle, introduced by Mossel and Ross (2015). Their model consists of a puzzle—an n×n grid, where each vertex is viewed as a center of a piece. Each of the four edges adjacent to a vertex is assigned one of q colors (corresponding to “jigs,” or cut shapes) uniformly at random. Unique assembly refers to there being only one puzzle (the original one) that is consistent with the collection of individual pieces. We show that for any ε>0, if qn1+ε, then unique assembly holds with high probability. The proof uses an algorithm that assembles the puzzle in time nΘ(1/ε).22  相似文献   

16.
We show that for every k≥1 and δ>0 there exists a constant c>0 such that, with probability tending to 1 as n→∞, a graph chosen uniformly at random among all triangle‐free graphs with n vertices and Mcn3/2 edges can be made bipartite by deleting ⌊δM⌋ edges. As an immediate consequence of this fact we infer that if M/n3/2→∞ but M/n2→0, then the probability that a random graph G(n, M) contains no triangles decreases as 2−(1+o(1))M. We also discuss possible generalizations of the above results. © 2000 John Wiley & Sons, Inc. Random Struct. Alg., 16: 260–276, 2000  相似文献   

17.
For a graph property P, the edit distance of a graph G from P, denoted EP(G), is the minimum number of edge modifications (additions or deletions) one needs to apply to G to turn it into a graph satisfying P. What is the furthest graph on n vertices from P and what is the largest possible edit distance from P? Denote this maximal distance by ed(n,P). This question is motivated by algorithmic edge‐modification problems, in which one wishes to find or approximate the value of EP(G) given an input graph G. A monotone graph property is closed under removal of edges and vertices. Trivially, for any monotone property, the largest edit distance is attained by a complete graph. We show that this is a simple instance of a much broader phenomenon. A hereditary graph property is closed under removal of vertices. We prove that for any hereditary graph property P, a random graph with an edge density that depends on P essentially achieves the maximal distance from P, that is: ed(n,P) = EP(G(n,p(P))) + o(n2) with high probability. The proofs combine several tools, including strengthened versions of the Szemerédi regularity lemma, properties of random graphs and probabilistic arguments. © 2008 Wiley Periodicals, Inc. Random Struct. Alg., 2008  相似文献   

18.
Consider the random graph process that starts from the complete graph on n vertices. In every step, the process selects an edge uniformly at random from the set of edges that are in a copy of a fixed graph H and removes it from the graph. The process stops when no more copies of H exist. When H is a strictly 2‐balanced graph we give the exact asymptotics on the number of edges remaining in the graph when the process terminates and investigate some basic properties namely the size of the maximal independent set and the presence of subgraphs.  相似文献   

19.
We show that the variance of the number of edges in the random sphere of influence graph built on n i.i.d. sites which are uniformly distributed over the unit cube in R d, grows linearly with n. This is then used to establish a central limit theorem for the number of edges in the random sphere of influence graph built on a Poisson number of sites. Some related proximity graphs are discussed as well. ©1999 John Wiley & Sons, Inc. Random Struct. Alg., 14, 139–152, 1999  相似文献   

20.
Recently, Bollobás, Janson and Riordan introduced a family of random graph models producing inhomogeneous graphs with n vertices and Θ(n) edges whose distribution is characterized by a kernel, i.e., a symmetric measurable function κ: [0, 1]2 → [0, ∞). To understand these models, we should like to know when different kernels κ give rise to “similar” graphs, and, given a real‐world network, how “similar” is it to a typical graph G(n, κ) derived from a given kernel κ. The analogous questions for dense graphs, with Θ(n2) edges, are answered by recent results of Borgs, Chayes, Lovász, Sós, Szegedy and Vesztergombi, who showed that several natural metrics on graphs are equivalent, and moreover that any sequence of graphs converges in each metric to a graphon, i.e., a kernel taking values in [0, 1]. Possible generalizations of these results to graphs with o(n2) but ω(n) edges are discussed in a companion article [Bollobás and Riordan, London Math Soc Lecture Note Series 365 (2009), 211–287]; here we focus only on graphs with Θ(n) edges, which turn out to be much harder to handle. Many new phenomena occur, and there are a host of plausible metrics to consider; many of these metrics suggest new random graph models and vice versa. © 2010 Wiley Periodicals, Inc. Random Struct. Alg., 39, 1‐38, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号