首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A series of Al 2p, K 2p, O 1s and N 1s core‐level spectra have been used to characterize the interaction between potassium (K) and tris(8‐hydroxyquinoline) aluminium (Alq3) molecules in the K‐doped Alq3 layer. All core‐level spectra were tuned to be very surface sensitive in selecting various photon energies provided by the wide‐range beamline at the National Synchrotron Radiation Research Center, Taiwan. A critical K concentration (x = 2.4) exists in the K‐doped Alq3 layer, below which the K‐doped atoms generate a strained environment near the O and N atoms within 8‐quinolinoline ligands. This creates new O 1s and N 1s components on the lower binding‐energy side. Above the critical K coverage, the K‐doped atoms attach the O atoms in the Al—O—C bonds next to the phenoxide ring and replace Al—O—C bonds by forming K—O—C bonds. An Alq3 molecule is disassembled into Alq2 and Kq by bond cutting and bond formation. The Alq2 molecule can be further dissociated into Alq, or even Al, through subsequent formations of Kq.  相似文献   

2.
The ferromagnetic property of Mn‐doped 8‐hydroxy‐quinoline aluminum (Alq3), synthesized by thermal co‐evaporation of pure Mn metals and Alq3 powders, was investigated. The weak ferromagnetic property was observed in 5%‐doped Alq3, with saturation magnetization of around 0.05μB/Mn. The doped Mn chemically interacted with O atoms, producing a new gap state at 0.34 eV above the highest occupied molecular orbital and reducing the effective electron concentration. This led to the decrease of the electron affinity and increase of the optical bandgap, resulting in the reduction of the hole‐injection barrier in comparison with the electron‐injection barrier to the Alq3 layer. From these, the origin of the observed ferromagnetism is suggested. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Six tetraphenylporphyrins (TRPPH2) with different horizontal substituents R (R = H, CH3, OH, F, Cl, Br) were synthesized, and the organic light‐emitting diode (OLED) devices with a general configuration of ITO/TPD/Alq3:2%TRPPH2/Alq3/Al were prepared. The substituted TRPPH2 was used as the host dopant, 4,4‐bis‐(m‐tolyphenylamino)biphenyl (TPD) was used as a hole‐transporting material, and aluminum tris(8‐quinolinolato) (Alq3) was used as an electron‐transporting material. The electroluminescent (EL) properties of these devices were studied to understand the light emitting properties of the substituted TRPPH2. Previous studies have found that the color emitted by the devices was dependent on the TRPPH2 dye concentration. The electronic effect of the horizontal substituents R of TRPPH2 influenced the turn‐on voltage, brightness, and power efficiency of the devices. Also, the electroluminescence performance of the porphyrin‐doped OLED devices depended on the effectual overlaps between the emission of electron‐transporting material and the absorption of the dopants. This means that it is possible to evaluate the electroluminescence performance of the porphyrin‐doped OLED devices based on the emission of electron‐transporting material and the absorption of the dopants. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
《X射线光谱测定》2006,35(2):106-111
Dy2O3 and Dy metal's resonant inelastic x‐ray scattering (RIXS) spectra were measured in the Beijing Synchrotron Radiation Facility. As a bulk sensitive probe and two‐photon process, RIXS provides more information on the electronic structure of matter. In this full RIXS experiment, the 2p64fn→ 2p54fn5d1 (2p54fn + 15d0) → 2p63d94fn5d1 (2p63d94fn + 15d0) channel of two samples (Dy2O3 and Dy metal) was studied. Further comparison shows that there are many differences in the RIXS spectra. Dy metal has only a single resonance and its 5d band is broader than that of Dy2O3. In the resonant regime, it has a lower final state energy, whereas in the non‐resonant regime it exceeds Dy2O3. This causes a broader bandwidth of the main final state B and a narrower bandwidth in the resonant and non‐resonant regime. The pre‐edge structure in Dy L3 absorption spectra was also resolved using RIXS, which cannot be seen in conventional XAS owing to 2p core hole lifetime broadening. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
The formation of local highly aluminum‐doped (Al‐p+) regions by rapid thermal annealing (firing) of screen‐printed aluminum strongly depends on the temperature profile and the contact geometry. We measure the local Al‐p+ layer thickness WAl‐p+ as a function of the point and line contact size. Using quantitative yet simple analytical modeling, the time‐dependent silicon concentration in the Al melt is described by elementary differential equations. From this we calculate WAl‐p+ and find agreement with the measurements. In contrast to the formation of full area Al‐p+ layers we find a smaller silicon concentration at the end of the firing process compared to the equilibrium concentration. This is a result of the process dynamics such as the dissolution rate of solid silicon and the transport of silicon in the Al melt. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
X‐ray absorption near‐edge structure (XANES) and X‐ray photoelectron spectroscopy (XPS) of Nd‐doped phosphate glasses have been studied before and after gamma irradiation. The intensity and the location of the white line peak of the L3‐edge XANES of Nd are found to be dependent on the ratio O/Nd in the glass matrix. Gamma irradiation changes the elemental concentration of atoms in the glass matrix, which affects the peak intensity of the white line due to changes in the covalence of the chemical bonds with Nd atoms in the glass (structural changes). Sharpening of the Nd 3d5/2 peak profile in XPS spectra indicates a deficiency of oxygen in the glasses after gamma irradiation, which is supported by energy‐dispersive X‐ray spectroscopy measurements. The ratio of non‐bridging oxygen to total oxygen in the glass after gamma radiation has been found to be correlated to the concentration of defects in the glass samples, which are responsible for its radiation resistance as well as for its coloration.  相似文献   

7.
The energy‐dependent scintillation intensity of Eu‐doped fluorozirconate glass‐ceramic X‐ray detectors has been investigated in the energy range from 10 to 40 keV. The experiments were performed at the Advanced Photon Source, Argonne National Laboratory, USA. The glass ceramics are based on Eu‐doped fluorozirconate glasses, which were additionally doped with chlorine to initiate the nucleation of BaCl2 nanocrystals therein. The X‐ray excited scintillation is mainly due to the 5d–4f transition of Eu2+ embedded in the BaCl2 nanocrystals; Eu2+ in the glass does not luminesce. Upon appropriate annealing the nanocrystals grow and undergo a phase transition from a hexagonal to an orthorhombic phase of BaCl2. The scintillation intensity is investigated as a function of the X‐ray energy, particle size and structure of the embedded nanocrystals. The scintillation intensity versus X‐ray energy dependence shows that the intensity is inversely proportional to the photoelectric absorption of the material, i.e. the more photoelectric absorption the less scintillation. At 18 and 37.4 keV a significant decrease in the scintillation intensity can be observed; this energy corresponds to the K‐edge of Zr and Ba, respectively. The glass matrix as well as the structure and size of the embedded nanocrystals have an influence on the scintillation properties of the glass ceramics.  相似文献   

8.
Greatly enhanced and abnormal Raman spectra were discovered in the nominal (Ba1 − xErx)Ti1 − x/4O3 (x = 0.01) (BET) ceramic for the first time and investigated in relation to the site occupations of Er3+ ions. BaTiO3 doped with Ti‐site Er3+ mainly exhibited the common Raman phonon modes of the tetragonal BaTiO3. Er3+ ions substituted for Ba sites are responsible for the abnormal Raman spectra, but the formation of defect complexes will decrease spectral intensity. A large increase in intensity showed a hundredfold selectivity for Ba‐site Er3+ ions over Ti‐site Er3+ ions. A strong EPR signal at g = 1.974 associated with ionized Ba vacancy defects appeared in BET, and the defect chemistry study indicated that the real formula of BET is expressed by (Ba1 − xEr3x/4)(Ti1 − x/4Erx/4)O3. These abnormal Raman signals were verified to originate from a fluorescent effect corresponding to 4S3/24I15/2 transition of Ba‐site Er3+ ions. The fluorescent signals were so intense that they overwhelmed the traditional Raman spectra of BaTiO3. The significance is that the abnormal Raman spectra may act as a probe for the Ba‐site Er3+ occupation in BaTiO3 co‐doped with Er3+ and other dopants. A new broad EPR signal at g = 2.23 was discovered, which originated from Er3+ Kramers ions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
We have succesfully investigated emissive interface states in fabricated indium‐tin‐oxide (ITO)/N,N′‐di‐1‐naphthyl‐N,N′‐diphenyl‐1,1′‐biphenyl‐4,4′diamine (α‐NPD)/tris(8‐hydroxyquinoline) aluminum (Alq3)/LiF/Al organic light‐emitting diodes (OLEDs) by a modified deep‐level optical spectroscopy (DLOS) technique. In the vicinity of the α‐NPD/Alq3 emissive interface, a discrete trap level was found to be located at ~1.77 eV below the conduction band of Alq3, in addition to band‐to‐band transitions of carriers from α‐NPD to Alq3. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Aluminium‐doped p‐type (Al‐p+) silicon emitters fabricated by means of a simple screen‐printing process are effectively passivated by plasma‐enhanced chemical‐vapour deposited amorphous silicon (a‐Si). We measure an emitter saturation current density of only 246 fA/cm2, which is the lowest value achieved so far for a simple screen‐printed Al‐p+ emitter on silicon. In order to demonstrate the applicability of this easy‐to‐fabricate p+ emitter to high‐efficiency silicon solar cells, we implement our passivated p+ emitter into an n+np+ solar cell structure. An independently confirmed conversion efficiency of 19.7% is achieved using n‐type phosphorus‐doped Czochralski‐grown silicon as bulk material, clearly demonstrating the high‐efficiency potential of the newly developed a‐Si passivated Al‐p+ emitter. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
《X射线光谱测定》2005,34(3):179-182
The energies and intensities of the various transitions corresponding to the transition scheme 2p3/2?13x?1–3x?13d3/2?1 (i.e. L3Mx–MxM4) were used to compute theoretical Lα2 satellite spectra in 13 elements in the atomic number range of 62 ≤ Z ≤ 90. The energies were calculated using available HFS data on K–LM and L–MM transition energies. The intensities of all the possible transitions were estimated by considering cross‐sections for the Auger transitions simultaneous to a hole creation and then distributing statistically the total cross‐sections for initial two‐hole states 2p3/2?13x?1 (L3Mx) amongst various allowed transitions from these initial states to 3x?13d3/2?1 (MxM4) final states. Each transition was assumed to give rise to a Gaussian line and the overall spectrum was computed as the sum of these Gaussian curves. The calculated spectra were compared with the available measured Lα satellite spectra. The peaks in the theoretical satellite spectra were identified as the experimentally reported satellites Lαs, La13, La14 and La17, which lie on the high‐energy side of the Lα2 dipole line. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
Electronic states and their energies are calculated for a mixed‐ligand Ir(III) compound, (5‐chloro‐8‐hydroxyquinoline) bis(2‐phenylpyridyl) iridium (called IrQ(ppy)2‐5Cl) using time‐dependent density functional theory (TDDFT) calculations and are compared with the experimental result. A good agreement is obtained between the calculated and measured absorption spectra. The d‐πQ* molecular orbital transition gives the lowest‐energy triplet state absorption band. Its energy is estimated as 1.84 eV (671 nm), which is close to the absorption band position of 1.86 eV (666 nm) observed for IrQ(ppy)2‐5Cl doped in 4,4′‐N,N′‐dicarbazole‐biphenyl (CBP) host and of 1.88 eV (660 nm) observed for IrQ(ppy)2‐5Cl doped in polystyrene (PS). The second triplet state absorption band is caused by d‐πppy transition. Its position is calculated as 2.51 eV (494 nm). The dipole moment is estimated as 3.45 D, which is lower than the dipole moment of fac‐Ir(ppy)3. This is understood by a reduced charge transfer between Ir(III) and quinoline ligand. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
Single crystals of the Cu x TiSe2 compound with x = 0.05, 0.09, and 0.33 have been grown. Resonance photoelectron Cu 3p-3d and 2d-3d spectra of the valence bands, the spectra of the core levels, and the L absorption spectra for titanium and copper have been obtained. It is shown that the degree of oxidation of titanium atoms is +4 and the state of copper atoms is close to the state of free copper ions. It is found that the spectra of the valence bands obtained under the Cu 3p and 2p resonance conditions radically differ. For the spectra in the Cu 2p excitation regime, several bands corresponding to different decay channels of the excited state are observed. According to calculations of the density of states, the 3d states of copper are filled incompletely; the occupancy of the 3d band of copper is 9.5 electrons per atom.  相似文献   

14.
Organic light-emitting diodes were fabricated with a structure of indium-tin-oxide (ITO)/poly(N-vinylcarzole)(PVK):4-(dicyanom-ethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB)/8-tris-hydroxyquinoline aluminum (Alq3)/lithium fluoride (LiF)/Al. The energy transfer from PVK to Alq3 then to DCJTB and the charge trapping processes were investigated by employing the photoluminescence (PL) and electroluminescence (EL) spectra. With increasing thickness of the Alq3 layer, the PL and EL emission from PVK were decreased gradually, which indicated that the effective energy transfer occurred from PVK to Alq3 and then from Alq3 to DCJTB. At the same time, we found that the exciton recombination zone could be adjusted by controlling the Alq3 layer thickness and the applied voltages. The effects of different DCJTB concentrations on the optical and electrical characteristics of the devices were investigated, and an obvious red-shift was observed with the DCJTB dopant concentrations increasing in the PL and EL spectra.  相似文献   

15.
Tris (8-hydroxyquinoline) aluminum (Alq3) is an organic semiconductor molecule, widely used as an electron transport layer, light emitting layer in organic light-emitting diodes and a host for fluorescent and phosphorescent dyes. In this work thin films of pure and silver (Ag), cupper (Cu), terbium (Tb) doped Alq3 nanoparticles were synthesized using the physical vapor condensation method. They were fabricated on glass substrates and characterized by X-ray diffraction, scanning electron microscope (SEM), energy dispersive spectroscopy, atomic force microscope (AFM), UV-visible absorption spectra and studied for their photoluminescence (PL) properties. SEM and AFM results show spherical nanoparticles with size around 70–80 nm. These nanoparticles have almost equal sizes and a homogeneous size distribution. The maximum absorption of Alq3 nanoparticles is observed at 300 nm, while the surface plasmon resonant band of Ag doped sample appears at 450 nm. The PL emission spectra of Tb, Cu and Ag doped Alq3 nanoparticles show a single broad band at around 515 nm, which is similar to that of the pure one, but with enhanced PL intensity. The sample doped with Ag at a concentration ratio of Alq3:Ag?=?1:0.8 is found to have the highest PL intensity, which is around 2 times stronger than that of the pure one. This enhancement could be attributed to the surface plasmon resonance of Ag ions that might have increased the absorption and then the quantum yield. These remarkable result suggest that Alq3 nanoparticles incorporated with Ag ions might be quite useful for future nano-optoelectronic devices.  相似文献   

16.
Cs/InN and Ba/InN interfaces were studied by UV photoelectron spectroscopy in the submonolayer coverage range for the first time. Normal photoemission spectra from the valence band and spectra from In 4d, Ba 5p, Ba 4d, and Cs 5p core levels were investigated in the excitation energy range of 60–800 eV. It was found that metallization of the interface and narrowing of the valence band is observed upon increasing coverage.  相似文献   

17.
We measured the Raman spectra of ZnO nanoparticles (ZnO‐NPs), as well as transition‐metal‐doped (5% Mn(II), Fe(II) or Co(II)) ZnO nanoparticles, with an average size of 9 nm. A typical Raman peak at 436 cm−1 is observed in the ZnO‐NPs, whereas Zn1−xMnxO, Zn1−xFexO and Zn1−xCoxO presented characteristic peaks at 661, 665 and 675 cm−1, respectively. These peaks can be related to the formation of Mn3O4, Fe3O4 and Co3O4 species in the doped ZnO‐NPs. Moreover, these samples were analyzed at various laser powers. Here, we observed new vibrational modes (512, 571 and 528 cm−1), which are specific to Mn, Fe and Co dopants, respectively, and ZnO‐NPs did not reveal any additional modes. The new peaks were interpreted either as disorder activated phonon modes or as local vibrations of Mn‐, Fe‐ and Co‐related complexes in ZnO. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
High‐resolution infrared (IR) spectra of R‐(+)‐3‐methylcyclopentanone (R3MCP) in para‐hydrogen (pH2) crystal were recorded and compared with the corresponding IR spectra of R3MCP in Argon (Ar) isolation matrix as well as the IR spectra of the neat crystalline R3MCP at low deposition temperature of 4 ± 0.05 K. Moreover, IR spectra of R3MCP, hosted in pH2 crystal, were recorded using a high‐resolution Fourier transform IR spectrometer as a function of sample concentration and over the range 10–300 ppm. Furthermore, density functional theory calculations of simulated IR spectra for the optimized geometries of R3MCP equatorial‐methyl and axial‐methyl conformers are compared with experimental spectra for the purpose of investigating molecular conformation. Upon comparison between theoretical and experimental IR spectra, vibrational modes arising from equatorial and axial conformers have been successfully assigned and related to the individual conformer's structure. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
The 3d electron states in Ni3Al single crystals doped with Fe, Co, and Nb have been investigated using angular correlation of annihilation radiation (ACAR). The ACAR spectra contain information on the momentum distribution of valence electrons and strongly bound 3d electrons of the intermetallic compound. It has been established that the positrons in the Ni3Al crystals predominantly annihilate in the nickel sublattice from delocalized states. The doping of the compound by the third element leads to a variation in the momentum distribution of Ni 3d electrons due to the change in the character of interatomic bonds. An analysis of the momentum distribution has demonstrated that the niobium atoms increase the covalent component of the chemical bond as compared to the binary compound due to the d Nb-d Ni hybridization. The doping with cobalt atoms also enhances the tendency toward the formation of the covalent bond. At the same time, iron atoms have a weak effect on the electronic structure of the intermetallic compound.  相似文献   

20.
First-principles calculations showed that the thermodynamic stability of β-based ordered η2-AlCu phase doped with Fe is due to iron substitution in the copper sublattice (FeCu), which corresponds to the maximum number of Fe–Al bonds in the first cubic coordination polyhedron. This iron localisation leads to stable ω-like atomic displacements and pentagonal Al-nets in the (010) plane of η2-AlCu(Fe). This phase with iron substituting copper (e/a?=?1.925) is an energetically preferred η-based non-canonical approximant of the icosahedral phase (e/a?=?1.86). The energy gain for the FeCu position is determined by strong covalent Fe3d–Al3p bonding, while there is a weak Fe3d–Cu4s3d hybridisation for the FeAl substitution. Using a composite cluster model, we demonstrate that short-range order in the pretransition state of the β-Al–Cu–Fe solid solution observed prior to the precipitation of η-phase is stabilised due to formation of Fe–Al bonds in the first cubic coordination polyhedron of the composite cluster.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号