首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Homopolymerization of octadecene‐1 at different reaction conditions has been studied. Significant chain running can be seen at higher polymerization temperatures. Interestingly, insertion of octadecene‐1 into a sterically hindered nickel‐cation/carbon (secondary) bond is observed. The microstructure of the polymer was established using NMR spectroscopy. The effects of chain running on polymer melting, crystallization behavior, and dynamic mechanical thermal properties were studied using DSC and DMTA. The extent of chain running (i.e., 2,ω‐, 1,ω‐enchainments) decreases with an increase in the carbon number of α‐olefins. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 191–210, 2007  相似文献   

2.
Previously published material on the α‐methyl styrene/methyl methacrylate (α‐MS/MMA) copolymer system at temperatures above the ceiling temperature of α‐MS has focused on low‐conversion results. Several attempts have been made to estimate copolymer reactivity ratios from experimental data, but in most cases errors are present in the determination of copolymer composition variables. In this article, the results of rigorous parameter estimations, as applied to two sets of equations developed independently by P. Wittmer (Adv Chem 1971, 99, 140–174) and H. Kruger, J. Bauer, and J. Rubner (Makromol Chem 1987, 188, 2163–2175), are discussed. Experimental data for the copolymer system at low conversions, as well as over the full conversion range, are presented, covering a temperature range of 60–140 °C. A comparison of the data trends with traditional copolymer systems indicates that the reversibility of both MMA and α‐MS must be considered when composition, polymerization rate, or molecular weight equations are being developed. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1981–1990, 2000  相似文献   

3.
The effects of several low molecular weight compounds with hydroxyl groups on the physical properties of poly(ε‐caprolactone) (PCL) were investigated by Fourier transform infrared (FTIR) spectroscopy and high‐resolution solid‐state 13C NMR. PCL and 4,4′‐thiodiphenol (TDP) interact through strong intermolecular hydrogen bonds and form hydrogen‐bonded networks in the blends at an appropriate TDP content. The thermal and dynamic mechanical properties of PCL/TDP blends were investigated by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis, respectively. The melting point of PCL decreased, whereas both the glass‐transition temperature and the loss tangent tan δ of the blend increased with an increase in TDP content. The addition of 40 wt % TDP changed PCL from a semicrystalline polymer in the pure state to a fully amorphous elastomer. The molecules of TDP lost their crystallizability in the blends with TDP contents not greater than 40 wt %. In addition to TDP, three other PCL blend systems with low molecular weight additives containing two hydroxyl groups, 1,4‐dihydroxybenzene, 1,4‐di‐(2‐hydroxyethoxy) benzene, and 1,6‐hexanediol, were also investigated with FTIR and DSC, and the effects of the chemical structure of the additives on the morphology and thermal properties are discussed. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1848–1859, 2000  相似文献   

4.
A novel strategy to prepare reactively compatibilized polymer blends is reported. An oligomer that consists of AMS (α‐methyl styrene) and GMA (glycidyl methacrylate) is initially synthesized. When this oligomer is melt blended with poly(propylene) (PP), the GMA units in the oligomer are successfully grafted onto the PP chain, which is proven by measuring the FT‐IR spectrum of the blended PP. When the oligomer is added to a blend of PP/Ny66, an in‐situ compatibilization occurs, which leads to an increase in torque values during blending, a decrease in crystallinity degree of Ny66, and is observed by SEM images of the resulting blends. The compatibilizing effects of the oligomer are also observed in PP/Ny6 and polyethylene/Ny6 blends. A relevant compatibilization mechanism is proposed.

  相似文献   


5.
The miscibility, spherulite growth kinetics, and morphology of binary blends of poly(β‐hydroxybutyrate) (PHB) and poly(methyl acrylate) (PMA) were studied with differential scanning calorimetry, optical microscopy, and small‐angle X‐ray scattering (SAXS). As the PMA content increases in the blends, the glass‐transition temperature and cold‐crystallization temperature increase, but the melting point decreases. The interaction parameter between PHB and PMA, obtained from an analysis of the equilibrium‐melting‐point depression, is −0.074. The presence of an amorphous PMA component results in a reduction in the rate of spherulite growth of PHB. The radial growth rates of spherulites were analyzed with the Lauritzen–Hoffman model. The spherulites of PHB were volume‐filled, indicating the inclusion of PMA within the spherulites. The long period obtained from SAXS increases with increased PMA content, implying that the amorphous PMA is entrapped in the interlamellar region of PHB during the crystallization process of PHB. All the results presented show that PHB and PMA are miscible in the melt. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1860–1867, 2000  相似文献   

6.
The phase separation of a crystalline and miscible polymer blend, poly(ε-caprolactone) /poly(styrene-co-acrylonitrile) (PCL/SAN), has been studied by differential scanning calorimetry (DSC), using a SAN containing 28.3% of acrylonitrile units. Several phenomena can be associated with the occurrence of phase separation depending upon the composition of the mixture. Following annealing at high temperatures, below and above the phase separation temperature Tc, three cases can be distinguished. In Case I, there is no sign of crystallization during quenching and DSC scanning, but a melting peak is observed at Tc, and above. In Case II, there is no crystallization on quenching but it does occur during the DSC run; the shift of the crystallization peak can then be related to Tc. In Case III, there is crystallization on quenching, and additional crystallization during the DSC run; the change of area of the crystallization peak is indicative of Tc. From these observations, the phase diagram of the system was determined. © 1993 John Wiley & Sons, Inc.  相似文献   

7.
β‐Methyl‐α‐methylene‐γ‐butyrolactone (MMBL) was synthesized and then was polymerized in an N,N‐dimethylformamide (DMF) solution with 2,2‐azobisisobutyronitrile (AIBN) initiation. The homopolymer of MMBL was soluble in DMF and acetonitrile. MMBL was homopolymerized without competing depolymerization from 50 to 70 °C. The rate of polymerization (Rp) for MMBL followed the kinetic expression Rp = [AIBN]0.54[MMBL]1.04. The overall activation energy was calculated to be 86.9 kJ/mol, kp/kt1/2 was equal to 0.050 (where kp is the rate constant for propagation and kt is the rate constant for termination), and the rate of initiation was 2.17 × 10?8 mol L?1 s?1. The free energy of activation, the activation enthalpy, and the activation entropy were 106.0, 84.1, and 0.0658 kJ mol?1, respectively, for homopolymerization. The initiation efficiency was approximately 1. Styrene and MMBL were copolymerized in DMF solutions at 60 °C with AIBN as the initiator. The reactivity ratios (r1 = 0.22 and r2 = 0.73) for this copolymerization were calculated with the Kelen–Tudos method. The general reactivity parameter Q and the polarity parameter e for MMBL were calculated to be 1.54 and 0.55, respectively. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1759–1777, 2003  相似文献   

8.
Poly(ε‐caprolactone)/polylactide blend (PCL/PLA) is an interesting biomaterial because the two component polymers show good complementarity in their physical properties. However, PCL and PLA are incompatible thermodynamically and hence the interfacial properties act as the important roles controlling the final properties of their blends. Thus, in this work, the PCL/PLA blends were prepared by melt mixing using the block copolymers as compatibilizer for the studies of interfacial properties. Several rheological methods and viscoelastic models were used to establish the relations between improved phase morphologies and interfacial properties. The results show that the interfacial behaviors of the PCL/PLA blends highly depend on the interface‐located copolymers. The presence of copolymers reduces the interfacial tension and emulsified the phase interface, leading to stabilization of the interface and retarding both the shape relaxation and the elastic interface relaxation. As a result, besides the relaxation of matrices (τm) and the shape relaxation of the dispersed PLA phase (τF), a new relaxation behavior (τβ), which is attribute to the relaxation of Marangoni stresses tangential to the interface between dispersed PLA phase and matrix PCL, is observed on the compatibilized blends. In contrast to that of the diblock copolymers, the triblock copolymers show higher emulsifying level. However, both can improve the overall interfacial properties and enhance the mechanical strength of the PCL/PLA blends as a result. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 756–765, 2010  相似文献   

9.
In this study, tough and high heat‐resistant poly (vinyl chloride) (PVC)/poly (α‐methylstyrene–acrylonitrile) (α‐MSAN) blends (70/30) containing acrylic resin (ACR) as a toughening modifier was prepared. With the addition of ACR, heat distortion temperature increased slightly, which corresponded with the increase in glass transition temperature measured by differential scanning calorimetry and dynamic mechanical thermal analysis. Thermogravimetric analysis showed that addition of ACR improved the thermal stability. With regard to mechanical properties, tough behavior was observed combined with the decrease in tensile strength and flexural strength. A brittle‐ductile transition (BDT) in impact strength was found when ACR content increased from 8 to 10 phr. The impact strength was increased by 34.8 times with the addition of 15 phr ACR. The morphology correlated well with BDT in impact strength. It was also suggested from the morphology that microvoids and shear yielding were the major toughening mechanisms for the ternary blends. Our present study offers insight on the modification of PVC, since combination of α‐MSAN and ACR improves the toughness and heat resistance of pure PVC simultaneously. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
α‐Methyl glutamic acid (L ‐L )‐, (L ‐D )‐, (D ‐L )‐, and (D ‐D )‐γ‐dimers were synthesized from L ‐ and D ‐glutamic acids, and the obtained dimers were subjected to polycondensation with 1‐(3‐dimethylaminopropyl)‐3‐ethylcarbodiimide hydrochloride and 1‐hydroxybenzotriazole hydrate as condensation reagents. Poly‐γ‐glutamic acid (γ‐PGA) methyl ester with the number‐average molecular weights of 5000∼20,000 were obtained by polycondensation in N,N‐dimethylformamide in 44∼91% yields. The polycondensation of (L ‐L )‐ and (D ‐D )‐dimers afforded the polymers with much larger |[α]D | compared with the corresponding dimers. The polymer could be transformed into γ‐PGA by alkaline hydrolysis or transesterification into α‐benzyl ester followed by hydrogenation. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 732–741, 2001  相似文献   

11.
Two new ring opening polymerization (ROP) initiators, namely, (3‐allyl‐2‐(allyloxy)phenyl)methanol and (3‐allyl‐2‐(prop‐2‐yn‐1‐yloxy)phenyl)methanol each containing two reactive functionalities viz. allyl, allyloxy and allyl, propargyloxy, respectively, were synthesized from 3‐allylsalicyaldehyde as a starting material. Well defined α‐allyl, α′‐allyloxy and α‐allyl, α′‐propargyloxy bifunctionalized poly(ε‐caprolactone)s with molecular weights in the range 4200–9500 and 3600–10,900 g/mol and molecular weight distributions in the range 1.16–1.18 and 1.15–1.16, respectively, were synthesized by ROP of ε‐caprolactone employing these initiators. The presence of α‐allyl, α′‐allyloxy and α‐allyl, α′‐propargyloxy functionalities on poly(ε‐caprolactone)s was confirmed by FT‐IR, 1H, 13C NMR spectroscopy, and MALDI‐TOF analysis. The kinetic study of ROP of ε‐caprolactone with both the initiators revealed the pseudo first order kinetics with respect to ε‐caprolactone consumption and controlled behavior of polymerization reactions. The usefulness of α‐allyl, α′‐allyloxy functionalities on poly(ε‐caprolactone) was demonstrated by performing the thiol‐ene reaction with poly(ethylene glycol) thiol to obtain (mPEG)2‐PCL miktoarm star copolymer. α‐Allyl, α′‐propargyloxy functionalities on poly(ε‐caprolactone) were utilized in orthogonal reactions i.e copper catalyzed alkyne‐azide click (CuAAC) with azido functionalized poly(N‐isopropylacrylamide) followed by thiol‐ene reaction with poly(ethylene glycol) thiol to synthesize PCL‐PNIPAAm‐mPEG miktoarm star terpolymer. The preliminary characterization of A2B and ABC miktoarm star copolymers was carried out by 1H NMR spectroscopy and gel permeation chromatography (GPC). © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 844–860  相似文献   

12.
Blends of isotactic (natural) poly(3‐hydroxybutyrate) (PHB) and poly(methyl methacrylate) (PMMA) are partially miscible, and PHB in excess of 20 wt % segregates as a partially crystalline pure phase. Copolymers containing atactic PHB chains grafted onto a PMMA backbone are used to compatibilize phase‐separated PHB/PMMA blends. Two poly(methyl methacrylate‐g‐hydroxybutyrate) [P(MMA‐g‐HB)] copolymers with different grafting densities and the same length of the grafted chain have been investigated. The copolymer with higher grafting density, containing 67 mol % hydroxybutyrate units, has a beneficial effect on the mechanical properties of PHB/PMMA blends with 30–50% PHB content, which show a remarkable increase in ductility. The main effect of copolymer addition is the inhibition of PHB crystallization. No compatibilizing effect on PHB/PMMA blends with PHB contents higher than 50% is observed with various amounts of P(MMA‐g‐HB) copolymer. In these blends, the graft copolymer is not able to prevent PHB crystallization, and the ternary PHB/PMMA/P(MMA‐g‐HB) blends remain crystalline and brittle. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1390–1399, 2002  相似文献   

13.
Specific interactions in blends of poly(ε-caprolactone) (PCL) and poly(styrene-co-acry-lonitrile) (SAN) were studied as a function of copolymer composition and blend ratio by using Fourier-transform infrared spectroscopy (FTIR). It was shown that miscibility occurred within a certain range of copolymer compositions because the presence of PCL reduced the thermodynamically unfavorable repulsion between styrene and acrylonitrile segments in the random copolymer. This effect was observed in terms of a shift to higher frequencies in the 700 cm-1 γ-CH out-of-plane deformation vibration absorption of styrene and in the approximately 2236 cm?1 C?N stretching frequency band in acrylonitrile segments. Specific intermolecular interactions between SAN and PCL were not observed in this study. © 1993 John Wiley & Sons, Inc.  相似文献   

14.
Blends of poly(ε‐caprolactone) (PCL) with zein (PCL/zein) in different proportions (100/0, 75/25, 50/50, 25/75 and 0/100 wt% containing 5 wt% glycerol) were compared based on their mechanical properties (tensile strength, elongation at break, and Young's modulus), and on their thermal properties, the latter determined by thermogravimetric analysis (TGA) and dynamic mechanical thermal analysis (DMTA). The morphology of the materials was studied by scanning electron microscopy (SEM). Blends of PCL/zein showed reduced tensile strength and elongation at break, but increased Young's modulus compared to the pure polymers, in agreement with the DMTA and SEM results. These findings indicated that PCL and zein were incompatible. TGA showed that the thermal stability was enhanced by the addition of zein to PCL, whereas SEM showed a poor interfacial interaction between the polymers. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
Biodegradable polymers provide an attractive solution to reduce environmental pollution caused by the accumulation of plastic waste in landfills. In this study, the effect of polyethylene‐graft‐glycidyl methacrylate (PE‐g‐GMA) on the biodegradation of blends of poly(ε‐caprolactone) (PCL) and cellulose acetate (CA) (80/20, 60/40, 40/60, and 20/80 PCL/CA, w/w) was assessed by mass retention, tensile strength, and morphological properties. The principal fungal strains present in the soil after biodegradation were also identified. PCL and the blends containing 60% and 80% PCL showed greater mass loss and superficial change in simulated soil. PE‐g‐GMA increased the tensile strength retention during 3 months of aging in simulated soil. Scanning electron microscopy (SEM) indicated that pure PCL was more porous, which enhanced the hydrolysis and biodegradation of PCL. PE‐g‐GMA decreased the mass loss of the polymers, possibly by enhancing the interaction between PCL and CA, with the formation of hydrogen bonds between the carbonyl groups of PCL and the hydroxyl groups of CA. This effect was marked in blends with >40% PCL. Microbiological analysis revealed the presence of several species of fungi in the soil. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Nonisothermal crystallization and melting behavior of poly(β‐hydroxybutyrate) (PHB)–poly(vinyl acetate) (PVAc) blends from the melt were investigated by differential scanning calorimetry using various cooling rates. The results show that crystallization of PHB from the melt in the PHB–PVAc blends depends greatly upon cooling rates and blend compositions. For a given composition, the crystallization process begins at higher temperatures when slower scanning rates are used. At a given cooling rate, the presence of PVAc reduces the overall PHB crystallization rate. The Avrami analysis modified by Jeziorny and a new method were used to describe the nonisothermal crystallization process of PHB–PVAc blends very well. The double‐melting phenomenon is found to be caused by crystallization during heating in DSC. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 443–450, 1999  相似文献   

17.
Novel poly(ε‐caprolactone)‐b‐poly(ethylene glycol)‐b‐poly(ε‐caprolactone) (PCL‐PEG‐PCL) bearing pendant hydrophobic γ‐(carbamic acid benzyl ester) groups (PECB) and hydrophiphilic amino groups (PECN) were synthesized based on the functionalized comonomer γ‐(carbamic acid benzyl ester)‐ε‐caprolactone (CABCL). The thermal gelation behavior of the amphiphilic copolymer aqueous solutions was examined. The phase transition behavior could be finely tuned via the pendant groups, and an abnormal phenomenon occurred that the sol–gel transition temperature shifted to a higher temperature for PECB whereas a lower temperature for PECN. The micelles percolation was adopted to clarify the hydrogel mechanism, and the effect of the pendant groups on the micellization was further investigated in detail. The results demonstrated that the introduction of γ‐(carbamic acid benzyl ester) pendant groups significantly decreased the crystallinity of the copolymer micelles whereas amino pendant groups made the micelles easy to aggregate. Thus, the thermal gelation of PEG/PCL aqueous solution could be finely tuned by the pendant groups, and the pendant groups modified PEG/PCL hydrogels are expected to have great potential biomedical application. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2571–2581  相似文献   

18.
Poly(ethylene‐bε‐caprolactone) (PE‐b‐PCL) diblock copolymers were synthesized by ring‐opening polymerization (ROP) of ε‐caprolactone (CL) with α‐hydroxyl‐ω‐methyl polyethylene (PE‐OH) as a macroinitiator and ammonium decamolybdate (NH4)8[Mo10O34] as a catalyst. Polymerization was conducted in bulk (130–150°C) with high yield (87–97%). Block copolymers with different compositions were obtained and characterized by 1H and 13C NMR, MALDI‐TOF, SAXS, and DSC. End‐group analysis by NMR and MALDI‐TOF indicates the formation of α‐hydroxyl‐ω‐methyl PE‐b‐PCL. The PE‐b‐PCL degradation was studied using thermogravimetric analysis (TGA) and alkaline hydrolysis. The PCL block was hydrolyzed by NaOH (4M), without any effect on the PE segment. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
The poly(3‐hydroxbutyrate‐co‐3‐hydroxyvalerate)/poly(ε‐caprolactone) block copolymers (PHCLs) with three different weight ratios of PCL blocks (38%, named PHCL‐38; 53%, named PHCL‐53; and 60%, named PHCL‐60) were synthesized by using PHBV with two hydroxyl end groups to initiate ring‐opening polymerization of ε‐caprolactone. During DSC cooling process, melt crystallization of PHCL‐53 at relatively high cooling rates (9, 12, and 15 °C min?1) and PHCL‐60 at all the selected cooling rates corresponded to PCL blocks so that PHCL‐53 and PHCL‐60 were used to study the nonisothermal crystallization behaviors of PCL blocks. The kinetics of PCL blocks in PHCL‐53 and PHCL‐60 under nonisothermal crystallization conditions were analyzed by Mo equation. Mo equation was successful in describing the nonisothermal crystallization kinetics of PCL blocks in PHCLs. Crystallization activation energy were estimated using Kissinger's method. The results of kinetic parameters showed that both blocks crystallized more difficultly than corresponding homopolymers. With the increase of PCL content, the crystallization rate of PCL block increased gradually. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

20.
A copolymerization of macromonomer poly(ethylene oxide) (PEO) with a styryl end group (PEOS) and styrene was successfully carried out in the presence of poly(ε‐caprolactone) (PCL) with 2,2,6,6‐tetramethylpiperidinyl‐1‐oxy end group (PCLT). The resulting copolymer showed a narrower molecular weight distribution and controlled molecular weight. The effect of the molecular weight and concentration of PCLT and PEOS on the copolymerization are discussed. The purity of PEOS exerted a significant effect on the copolymerization; when the diol contents of PEO macromonomer were greater than 1%, the crosslinking product was found. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2093–2099, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号