首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two alkylthio‐substituted poly(p‐phenylenevinylene) (AT–PPV) derivatives, poly(2‐octylthio‐p‐phenylenevinylene) (OT–PPV) and poly[5‐methoxy‐2‐(2′‐ethyl‐hexylthio)‐p‐phenylenevinylene] (MEHT–PPV), were synthesized by a Heck coupling reaction for the investigation of the effect of alkylthio groups on the optoelectronic properties of poly(p‐phenylenevinylene) derivatives. The absorption peaks of OT–PPV and MEHT–PPV solutions were located at 431 and 438 nm, respectively. As for solid films, an OT–PPV film showed an absorption maximum wavelength at 444 nm, 13 nm redshifted in comparison with its solution value, whereas an MEHT–PPV film displayed the same absorption peak position as its dilute solution; this indicated that there was no interchain interaction in the MEHT–PPV film. Polymeric light‐emitting diodes (PLEDs) and polymer solar cells (PSCs) based on OT–PPV and MEHT–PPV were fabricated and characterized. Very narrow bandwidths of the electroluminescence (EL) spectra of the two AT–PPVs were found, with the full width at half‐maximum of the emission being 40 and 47 nm for OT–PPV and MEHT–PPV, respectively. The maximum EL efficiency of the single‐layer PLED based on MEHT–PPV with Al as a cathode reached 1.49 cd/A. The PSC based on a blend of OT–PPV and [6,6]‐phenyl‐C61 butyric acid methyl ester (PCBM) showed the power conversion efficiency of 1.4% under the illumination of AM1.5 (80 mW/cm2). © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1279–1290, 2006  相似文献   

2.
Novel poly(p‐phenylenevinylene) (PPV) copolymers derived from 1‐methoxy‐4‐octyloxyphenylene (MOP), 2,1,3‐benzothiadiazole (BT), and trans‐1,2‐bis(tributylstannyl)ethylene were first prepared by a palladium‐catalyzed Stille coupling reaction. The feed ratios of MOP to BT were 99.5:0.5, 99:1, 95:5, 85:15, 70:30, and 50:50. An efficient energy transfer from the 2‐methoxy‐5‐octyloxy‐p‐phenylenevinylene segment to the narrow‐band‐gap units was observed. The poly(2‐methoxy‐5‐octyloxy‐p‐phenylenevinylene‐2,1,3‐benzothiadiazolevinylene) copolymers emitted deep red light. The maximum electroluminescence emission of these PPV copolymers occurred at 659–724 nm and was accompanied by gradual redshifting with an increasing BT concentration. The photophysical properties were examined in comparison with those of copolymers based on BT and fluorene or N‐alkylcarbazole doped with the same BT concentration in the copolymer main chain. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2325‐2336, 2005  相似文献   

3.
A significant improvement in the electroluminescence (EL) properties was observed for a poly{5‐methoxy‐2‐[(2′‐ethyl‐hexyl)‐oxy]‐p‐phenylenevinylene} (MEH–PPV)/poly(2,3‐diphenyl‐5‐octyl‐p‐phenylenevinylene) (DPO–PPV) blend after a thermal treatment at 200 °C for 2 h in vacuo to furnish the chemical bonding between polymer chains. 1H NMR spectroscopy and two‐photon excitation microscopy revealed that the chemical bonding turned the immiscible polyblend into a system more like a block copolymer with a vertically segregated morphology. Because both the lowest unoccupied molecular orbital and highest occupied molecular orbital levels of MEH–PPV in the wetting layer were higher than those of DPO–PPV in the upper layer, the heterojunction between the two layers of the polymers fit the category of so‐called type II heterojunctions. As a result, the turn‐on voltage of the polymer light‐emitting diode prepared with the thermally treated polyblend decreased to ~0.6 V, and the EL emission intensities and quantum efficiencies increased to about 4 times those of the untreated polyblend. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 62–69, 2006  相似文献   

4.
Poly(p‐phenylenevinylene) (PPV) and its derivatives exhibit strong luminescence, being serious candidates to be used as active layers in organic light‐emitting diodes. However, the structural degradation caused by photo‐oxidation is an obstacle for commercial applications of such materials. Here, we show that spectroscopy ellipsometry is a useful technique to investigate the photo‐oxidation of poly[(2‐methoxy‐5‐hexyloxy)‐p‐phenylenevinylene] (MH‐PPV), a PPV derivative, which emits a red color light. Spectroscopy ellipsometry enables determination of the complex dielectric function—?*(E)—of MH‐PPV thin‐layer films exposed to air, in the 2.1–4.2 eV energy range, as a function of the light exposure time (te). By using the Lorentz model to fit the experimental ?*(E) curves, it was inferred that the interactions among polymeric chains increase with te. From ?*(E), it is also possible to obtain the complex refractive index, N*(E) = n + ik. At higher energies (where k ? n), n increases from 1.32 to 1.40 with the photo‐oxidation progress. The behavior of n was investigated by using the Lorenz–Lorentz equation, taking into account the contribution for n by the chromophores of MH‐PPV. The effect of photo‐oxidation, mainly due to the replacement of vinyl C?C by the ketone C?O bonds, is confirmed by Fourier transform infrared measurements, an effect that reduces the average effective polymer conjugation length. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1033–1041, 2004  相似文献   

5.
A poly(p‐phenylenevinylene) (PPV) derivative containing a bulky (2,2‐diphenylvinyl)phenyl group in the side chain, EHDVP‐PPV, was synthesized by Gilch route. The reduced tolane‐bisbenzyl (TBB) defects, as well as the structure of the polymer, was confirmed by various spectroscopic methods. The intramolecular energy transfer from the (2,2‐diphenylvinyl)phenyl side group to the PPV backbone was studied by UV‐vis and photoluminescence (PL) of the obtained polymer and model compound. The polymer film showed maximum absorption and emission peaks at 454 and 546 nm, respectively, and high PL efficiency of 57%. A yellow electroluminescence (λmax = 548 nm) was obtained with intensities of 6479 cd/m2 when the light‐emitting diodes of ITO/PEDOT/EHDVP‐PPV/LiF/Al were fabricated. The maximum power efficiency of the devices was 0.729 lm/W with a turn‐on voltage of 3.6 V. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5636–5646, 2004  相似文献   

6.
The photophysical and ion‐sensing properties of densely grafted conjugated polymer poly‐p‐phenylenevinylene‐g‐poly(2‐(methacryloyloxy)ethyl)trimethylammonium chloride (PPV‐g‐PMETAC) are presented herein. The grafted polymer exhibits excellent iodide‐sensing which is easily observed using fluorescence spectroscopy. The iodide detection limit for PPV‐g‐PMETAC was found to be 10 nM and was independent of temperature and pH <12. The change in fluorescence of PPV‐g‐PMETAC, upon exposure to iodide, was attributed to polymer aggregation due to changes in the morphology of the grafted PMETAC side chains, which was observed using atomic force microscopic and dynamic light scattering studies. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1997–2003  相似文献   

7.
To simplify the fabrication of multilayer light‐emitting diodes, we prepared a p‐phenylenevinylene‐based polymer capped with crosslinkable styrene through a Wittig reaction. Insoluble poly(p‐phenylenevinylene) derivative (PPVD) films were prepared by a thermal treatment. The photoluminescence and ultraviolet–visible (UV–vis) absorbance of crosslinked films and noncrosslinked films were studied. We also studied the solvent resistance of crosslinked PPV films with UV–vis absorption spectra and atomic force microscopy. Double‐layer devices using crosslinked PPVD as an emitting layer, 2‐(4‐tert‐butylphenyl)‐5‐phenyl‐1,3,4‐oxadiazole (PBD) in poly(methyl methacrylate) as an electron‐transporting layer, and calcium as a cathode were fabricated. A maximum luminance efficiency of 0.70 cd/A and a maximum brightness of 740 cd/m2 at 16 V were demonstrated. A 12‐fold improvement in the luminance efficiency with respect to that of single‐layer devices was realized. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2124–2129, 2004  相似文献   

8.
We report a novel poly (m‐phenylenevinylene)s and their copolymers based on renewable resource starting material 3‐pentadecylphenol to trace the Forster energy transfer process and molecular aggregation in the π‐conjugated polymers. The new bisylide monomer was polymerized with bisaldehyde (or benzaldehyde) under Wittig‐Horner reaction conditions to prepare poly [(4‐methoxy‐6‐pentadecyl‐1, 3‐phenylenevinylene)‐alt‐(1, 3‐phenylenevinylene)] (m‐PPV) and its para‐counterpart poly [(4‐methoxy‐6‐pentadecyl‐1, 3‐phenylenevinylene)‐alt‐(1, 4‐phenylenevinylene)] (p‐PPV) and oligo‐phenylenevinylene model compound 4‐methoxy‐6‐pentadecyl‐1, 3‐distyrylbenzene (OPV). A series of with m‐ or p‐conjugated segments were also prepared by varying the m‐ and p‐content from 0 to 100% in the feed. The selective excitation of m‐conjugated segments in the copolymer by 310 nm light showed emission properties of pure p‐conjugated segments indicating the efficient Forster energy transfer process in segmented copolymers. Both solution quantum yields and the emission intensities increase up to 75% of para‐content in the copolymers. In the solid state, the increase in the p‐incorporation in the copolymer decreases the photoluminescent intensity almost by four times as compared to that of pure meta‐substituted PPV. The excitation spectra of the polymers confirmed a new peak at 400 nm corresponding to the aggregated polymer chains in the film, which is absent in the solution. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3241–3256, 2008  相似文献   

9.
Green‐emitting substituted poly[(2‐hexyloxy‐5‐methyl‐1,3‐phenylenevinylene)‐alt‐(2,5‐dihexyloxy‐1,4‐phenylenevinylene)]s ( 6 ) were synthesized via the Wittig–Horner reaction. The polymers were yellow resins with molecular weights of 10,600. The ultraviolet–visible (UV–vis) absorption of 6 (λmax = 332 or 415 nm) was about 30 nm redshifted from that of poly[(2‐hexyloxy‐5‐methyl‐1,3‐phenylenevinylene)‐alt‐(1,4‐phenylenevinylene)] ( 2 ) but was only 5 nm redshifted with respect to that of poly[(1,3‐phenylenevinylene)‐alt‐(2,5‐dihexyloxy‐1,4‐phenylenevinylene)] ( 1 ). A comparison of the optical properties of 1 , 2 , and 6 showed that substitution on m‐ or p‐phenylene could slightly affect their energy gap and luminescence efficiency, thereby fine‐tuning the optical properties of the poly[(m‐phenylene vinylene)‐alt‐(p‐phenylene vinylene)] materials. The vibronic structures were assigned with the aid of low‐temperature UV–vis and fluorescence spectroscopy. Light‐emitting‐diode devices with 6 produced a green electroluminescence output (emission λmax ~ 533 nm) with an external quantum efficiency of 0.32%. Substitution at m‐phenylene appeared to be effective in perturbing the charge‐injection process in LED devices. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1820–1829, 2004  相似文献   

10.
An N‐phenylcarbazole‐containing poly(p‐phenylenevinylene) (PPV), poly[(2‐(4′‐carbazol‐9‐yl‐phenyl)‐5‐octyloxy‐1,4‐phenylenevinylene)‐alt‐(2‐(2′‐ethylhexyloxy)‐5‐methoxy‐1,4‐phenylenevinylene)] (Cz‐PPV), was synthesized, and its optical, electrochemical, and electroluminescent properties were studied. The molecular structures of the key intermediates, the carbazole‐containing boronic ester and the dialdehyde monomer, were crystallographically characterized. The polymer was soluble in common organic solvents and exhibited good thermal stability with a 5% weight loss at temperatures above 420 °C in nitrogen. A cyclic voltammogram showed the oxidation peak potentials of both the pendant carbazole group and the PPV main chain, indicating that the hole‐injection ability of the polymer would be improved by the introduction of the carbazole‐functional group. A single‐layer light‐emitting diode (LED) with a simple configuration of indium tin oxide (ITO)/Cz‐PPV (80 nm)/Ca/Al exhibited a bright yellow emission with a brightness of 1560 cd/m2 at a bias of 11 V and a current density of 565 mA/cm2. A double‐layer LED device with the configuration of ITO/poly(3,4‐ethylenedioxy‐2,5‐thiophene):poly (styrenesulfonic acid) (60 nm)/Cz‐PPV (80 nm)/Ca/Al gave a low turn‐on voltage at 3 V and a maximum brightness of 6600 cd/m2 at a bias of 8 V. The maximum electroluminescent efficiency corresponding to the double‐layer device was 1.15 cd/A, 0.42 lm/W, and 0.5%. The desired electroluminescence results demonstrated that the incorporation of hole‐transporting functional groups into the PPVs was effective for enhancing the electroluminescent performance. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5765–5773, 2005  相似文献   

11.
Novel blue‐emitting germanium‐containing poly(p‐phenylenevinylene) (PPV) derivatives with well‐defined conjugation lengths were synthesized via Wittig‐condensation polymerizations. The polymers can be color‐tuned by the introduction of various chromophores into the PPV‐based polymer backbones. The photoluminescence (PL) spectra of the polymers, GePVK (containing carbazole moieties), GeMEH (containing dialkoxybenzene moieties), and GePTH (containing phenothiazine moieties), were found to exhibit blue, greenish blue, and green emissions, respectively. GePTH produces more red‐shifted emission than GeMEH and GEPVK, resulting in green emission, and the solution and solid state PL spectra of GePVK consist of almost blue emission. The electroluminescence spectra of GeMEH and GePTH contain yellowy green and yellow colors, respectively. Interestingly, GePVK exhibits white emission with CIE coordinates of (0.33, 0.37) due to electroplex emission in the light‐emitting diodes. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 979–988, 2008  相似文献   

12.
A series of new poly(p‐phenylene vinylene) derivatives with different dendritic pendants—poly{2‐[3′,5′‐bis(2″‐ethylhexyloxy)benzyloxy]‐1,4‐phenylenevinylene} (BE–PPV), poly{2‐[3′,5′‐bis(3″,7″‐dimethyl)octyloxy]‐1,4‐phenylenevinylene} (BD–PPV), poly(2‐{3′,5′‐bis[3″,5″‐bis(2?‐ethylhexyloxy)benzyloxy]benzyloxy}‐1,4‐phenylenevinylene) (BBE–PPV), poly(2‐{3′,5′‐bis[3″,5″‐bis(3?,7?‐dimethyloctyloxy)benzyloxy]benzyloxy}‐1,4‐phenylenevinylene) (BBD–PPV), and poly[(2‐{3′,5′‐bis[3″,5″‐bis(2?‐ethylhexyloxy)benzyloxy]benzyloxy}‐1,4‐phenylenevinylene)‐co‐(2‐{3′,5′‐bis[3″,5″‐bis(3?,7?‐dimethyloctyloxy)benzyloxy]benzyloxy}‐1,4‐phenylenevinylene)] (BBE‐co‐BBD–PPV; 1:1)—were successfully synthesized according to the Gilch route. The structures and properties of the monomers and the resulting conjugated polymers were characterized with 1H and 13C NMR, elemental analysis, gel permeation chromatography, thermogravimetric analysis, ultraviolet–visible absorption spectroscopy, photoluminescence, and electroluminescence spectroscopy. The obtained polymers possessed excellent solubility in common solvents and good thermal stability, with a 5% weight loss temperature of more than 328 °C. The weight‐average molecular weights and polydispersity indices of BE–PPV, BD–PPV, BBE–PPV, BBD–PPV, and BBE‐co‐BBD–PPV (1:1) were in the range of 1.33–2.28 × 105 and 1.35–1.53, respectively. Double‐layer light‐emitting diodes (LEDs) with the configuration of indium tin oxide/polymer/tris(8‐hydroxyquinoline) aluminum/Mg:Ag/Ag devices were fabricated, and they emitted green‐yellow light. The turn‐on voltages of BE–PPV, BD–PPV, BBE–PPV, BBD–PPV, and BBE‐co‐BBD–PPV (1:1) were approximately 5.6, 5.9, 5.5, 5.2, and 4.8 V, respectively. The LED devices of BE–PPV and BD–PPV possessed the highest electroluminescent performance; they exhibited maximum luminance with about 860 cd/m2 at 12.8 V and 651 cd/m2 at 13 V, respectively. The maximum luminescence efficiency of BE–PPV and BD–PPV was in the range of 0.37–0.40 cd/A. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3126–3140, 2005  相似文献   

13.
A soluble all‐aromatic poly(2,5‐diphenyl‐1,4‐phenylenevinylene) (2,5‐DP‐PPV) is synthesized by utilizing aromatic phosphonium and aldehyde monomers through Wittig reaction. The H1 NMR and FTIR measurements indicate that over 50% content of cis‐vinylene units exist in polymer backbone. The diphenyl‐substituted benzaldehyde monomer plays an important role to enhance cis‐products (Z‐selectivity) in Wittig reactions. The twisted cis‐segments in polymer backbone reduce the interchain interactions and enhance the solubility of such all‐aromatic PPV derivative in common organic solvents. 2,5‐DP‐PPV exhibits good solubility in common organic solvents, such as tetrahydrofuran and chloroform. The polymer film exhibits a blue light emission (λmax = 485 nm) and a very high photoluminescence efficiency of 78%. The cis‐trans photo isomerization of this polymer in solution and the impact on the optical properties are also investigated. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5242–5250, 2008  相似文献   

14.
Substituent‐induced electroluminescence polymers—poly[2‐(2‐dimethyldodecylsilylphenyl)‐1,4‐phenylenevinylene] [(o‐R3Si)PhPPV], poly[2‐(3‐dimethyldodecylsilylphenyl)‐1,4‐phenylenevinylene] [(m‐R3Si)PhPPV], and poly[2‐(4‐dimethyldodecylsilylphenyl)‐1,4‐phenylenevinylene] [(p‐R3Si)PhPPV]—were synthesized according to the Gilch polymerization method. The band gap and spectroscopic data were tuned by the dimethyldodecylsilyl substituent being changed from the ortho position to the para position in the phenyl side group along the polymer backbone. The weight‐average molecular weights and polydispersities were 8.0–96 × 104 and 3.0–3.4, respectively. The maximum photoluminescence wavelengths for (o‐R3Si)PhPPV, (m‐R3Si)PhPPV, and (p‐R3Si)PhPPV appeared around 500–530 nm in the green emission region. Double‐layer light‐emitting diodes with an indium tin oxide/poly(3,4‐ethylenedioxythiophene)/polymer/Al configuration were fabricated with these polymers. The turn‐on voltages and the maximum brightness of (o‐R3Si)PhPPV, (m‐R3Si)PhPPV, and (p‐R3Si)PhPPV were 6.5–8.7 V and 1986–5895 cd/m2, respectively. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2347–2355, 2004  相似文献   

15.
Polymerization of p‐(dimethylsilyl)phenylacetylene in toluene at 25 and 80°C using RhI(PPh3)3 as the catalyst afforded highly regio‐ and stereoregular poly(dimethylsilylene‐1,4‐phenylenevinylene)s (cis‐ 3 a and trans‐ 3 a ) containing 98% cis‐ and 99% trans‐vinylene moieties, respectively. Similarly, poly(butylmethylsilylene‐1,4‐phenylenevinylene)s ( 3 b with 91% cis‐ and 95% trans‐structures) and poly(diisopropylsilylene‐1,4‐phenylenevinylene) with 95% trans‐structure were synthesized. All polymers were soluble in common organic solvents. The trans‐type polymers showed red shifts and hyperchromic effects in the UV‐visible spectrum. The onset temperature of weight loss (T0) of cis‐ 3 a was much higher than that of trans‐ 3 a .  相似文献   

16.
A series of poly(p‐phenylenevinylene)s (PPVs) with good solubility were synthesized from thermal elimination of precursor poly(2,5‐didodecyloxy‐p‐phenylenevinylene) at different temperature via Wessling method. The polymer photophysics were influenced by the thermal elimination condition, which was consistent with NMR and IR characterizations. The additional absorption peak at longer wavelength and the red‐shifted emission maximum both in solution and in film, for PPVs obtained at high elimination temperature, indicated the existence of longer conjugated blocks in these systems. The emission maximum for drop‐cast film (436 nm) for PPV obtained under 200°C (PPV200) was 16 nm blue shifted to the spin‐coated films (452 nm) or 29 nm to the solution (465 nm). The SEM study showed drop‐cast film had the morphology of isolated conjugated particles in the matrix while blurry linear structure was found for spin‐coated film, which was consistent with the photophysics. The discussion about this difference was carried out based on the consideration of the flexibility of the polymer chains and different conjugated length of PPV in different states.  相似文献   

17.
We have synthesized, using the Gilch method, a novel poly(p‐phenylenevinylene) derivative (PPV‐PP) containing two pendent pentaphenylene dendritic wedges, and have characterized its structure and properties. The incorporated side chain pentaphenylene dendrons serve as solubilizing groups, prevent π‐stacking interactions from occurring between the polymer main chains, and suppress the formation of excimers in the solid state. Photoluminescence studies indicate that efficient intramolecular energy transfer occurred from the photoexcited pentaphenylene groups to the poly(p‐phenylenevinylene) backbone. The polymer film exhibits a maximum emission at 510 nm and had a photoluminescence efficiency of 46%, which is similar to that measured in dilute solution. The photoluminescence spectra remained almost unchanged after thermal annealing at 150 °C for 20 h, and displayed inhibited excimer formation. Polymer light‐emitting diodes that we fabricated in the configuration ITO/PEDOT/PPV‐PP/Mg:Ag/Ag exhibited a maximum emission peak at 513 nm, corresponding to the green region [x = 0.30 and y = 0.62 in the Commission Internationale de L'Eclairage (CIE) chromaticity coordinates]. The maximum brightness and maximum luminance efficiency were 1562 cd/m2 and 1.93 cd/A, respectively. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5147–5155, 2005  相似文献   

18.
A new series of symmetrically substituted bulky PPV‐copolymers based on poly(bis‐2,5‐(2‐ethylhexyloxy)‐1,4‐phenylenevinylene) ( BEH‐PPV ) bearing tricyclodecane (TCD) pendants were synthesized to study the effect of chain aggregation in the π‐conjugated polymer backbone. The composition of the copolymers was varied up to 100 mol % and the structures of the copolymer were confirmed by NMR and FTIR. The molecular weights of the copolymers were obtained as Mw = 11,500–1,78,800 depending on the TCD‐incorporation in BEH‐PPV. The origin of the π‐aggregation was investigated using mixture of solvents (polar or nonpolar) or temperature as external stimuli. Absorption, photoluminescence, and time‐resolved fluorescence decay techniques were employed as tools to trace molecular aggregation in solution and solid state. The TCD‐substituted bulky copolymers showed almost twice the enhancement in photoluminescence compared with that of BEH‐PPV . Solvent‐induced aggregation studies of copolymers revealed the existence of strong molecular aggregation in BEH‐PPV compared with that of bulky copolymers. Variable temperature studies further evidence for the reversibility of molecular aggregation on heating/cooling cycles and showed isosbetic points with respect to free and aggregated polymer chains. Time‐resolved fluorescent studies confirmed the existence of free and aggregated π‐conjugated species with a life time of 0.1 to 1.0 ns. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2631–2646, 2009  相似文献   

19.
Poly[2‐methoxy‐5‐(2′‐ethylhexyloxy)‐p‐phenylenevinylene] (MEH‐PPV) with a molar mass of 26–47 × 104 g mol?1 and a polydispersity of 2.5–3.2 was synthesized by a liquid–solid two‐phase reaction. The liquid phase was tetrahydrofuran (THF) containing 1,4‐bis(chloromethyl)‐2‐methoxy‐5‐(2′‐ethylhexyloxy)benzene as the monomer and a certain amount of tetrabutylammonium bromide as a phase‐transfer catalyst. The solid phase consisted of potassium hydroxide particles with diameters smaller than 0.5 mm. The reaction was carried out at a low temperature of 0 °C and under nitrogen protection. No gelation was observed during the polymerization process, and the polymer was soluble in the usual organic solvents, such as chloroform, toluene, THF, and xylene. A polymer light‐emitting diode was fabricated with MEH‐PPV as an active luminescent layer. The device had an indium tin oxide/poly(3,4‐ethylenedioxylthiophene) (PEDOT)/MEH‐PPV/Ba/Al configuration. It showed a turn‐on voltage of 3.3 V, a luminescence intensity at 6.1 V of 550 cd/m2, a luminescence efficiency of 0.43 cd/A, and a quantum efficiency of 0.57%. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3049–3054, 2004  相似文献   

20.
A novel poly(p‐phenylenevinylene) PPV‐based copolymer (3C‐OXD‐PPV) with electron‐deficient oxadiazole segments as the side chain has been successfully synthesized through the Gilch polymerization. The obtained copolymer is soluble in common organic solvents such as chloroform, tetrahydronfuran, and 1,1,2,2‐tetrachloroethane. The copolymer was characterized by 1H NMR, elemental analysis and GPC. TGA measurement of the copolymer shows it has good thermal stability with decomposition temperature higher than 350 °C. The absorption, electrochemical properties of the 3C‐OXD‐PPV were investigated and also compared with the properties of MEH‐PPV. The HOMO and LUMO levels of 3C‐OXD‐PPV were estimated from the electrochemical cyclic voltammograms. Bulk‐heterojunction PVCs were fabricated by using 3C‐OXD‐PPV blended PCBM as an active layer. The PCE of the PVC is 1.60% under 100 mW cm?2 AM 1.5 illumination, which indicates that 3C‐OXD‐PPV is a potential candidate for the application of polymer PVC. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1003–1012, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号