首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ferroelectric domain wall thickness of a fluoride BaMgF4 single crystal was investigated by piezoresponse force microscopy. It was found that the domain wall thickness shows a strong spatial variation in the as‐grown crystal and the polarization reversal process. The original wall thickness is greater (about two to seven times) than that switched by the tip fields of the atomic force microscope. A significantly narrower domain wall was obtained in the higher tip‐field. The trapped defects at the domain wall play an important role in the spatial variation of the polarization width of 180° domain wall in the BaMgF4 single crystal. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Pb(Zr,Ti)O3 (PZT) ferroelectric thin film was prepared by the sol-gel technique and crystallized with a (111) preferred orientation. The domain structure and polarization reversal behavior were investigated by using scanning force microscopy (SFM) piezoresponse mode at the nanometer scale. A step structure of approximately 30 nm in width was directly observed, which was formed during the polarization reversal process. The presence of the step structure reveals that the forward domain-growth mechanism is the dominant domain-switching process in our PZT thin films. Received: 6 August 2002 / Accepted: 9 August 2002 / Published online: 28 October 2002 RID="*" ID="*"Corresponding author. Fax: +86-21/5241-3122, E-mail: huarongzeng@163.net  相似文献   

3.
Higher order ferroic switching induced by scanning force microscopy.   总被引:2,自引:0,他引:2  
We present the observation of ferroelastoelectric switching in a ferroelectric material. It is achieved in barium titanate thin film by simultaneously applying electric field and compressive stress with the tip of a scanning force microscope. For low compressive stresses, the presented measurements reveal classical ferroelectric domain reversal, i.e., the spontaneous polarization is aligned parallel to the applied electric field. However, for high compressive stresses the direction of polarization after switching is antiparallel to the poling field, demonstrating ferroelastoelectric switching.  相似文献   

4.
In this paper, we describe a statistical method of quantification of the number of functional groups at the contact area of a probe tip for atomic force microscopy from the result of repetitive pull-off force measurements. We have investigated laboratory-made carbon nanotube (CNT) probe tips to apply them for chemical force microscopy because limited number of functional groups at the tip-end is expected. Using a CNT tip, we conducted repetitive pull-off force measurements against a self-assembled monolayer terminated with carboxyl group and analyzed them in terms of the number of hydrogen bond groups at the CNT tip. The elementary hydrogen bond rupture force quantum in n-decane medium was estimated to be 84.2 ± 0.5 pN in the present system. Thus it was revealed that only a couple of hydrogen bond groups of the CNT tip were participating in hydrogen bonding with the sample on an average in this experimental system.  相似文献   

5.
It was found that STM (scanning tunneling microscopy) images of defects in highly oriented pyrolytic graphite introduced by bombardment of 400 eV Ar+ ions in ultra-high vacuum exhibit substantial changes in the course of STM probing. Detailed examination of abrupt changes in the tunneling current measured at defect sites during voltage scans shows that the primary cause of the defect-image change was found to be neither the injected current nor the injected power but the absolute value of the voltage applied between the probe tip and the sample. We propose that an electric polarization induced force attracting the sample surface toward the probe tip widens the layer spacing of the graphite surface, leading to an acceleration of the lateral diffusion of interstitial atoms introduced by the ion irradiation, which results in a change in the defect structures and the accompanying electronic structures sensible in the STMimaging. Received: 14 June 2001 / Accepted: 7 September 2001 / Published online: 20 December 2001  相似文献   

6.
We investigate spin domain mapping of a CrO2 thin film using spin-polarized current microscopy at room temperature, where conductive atomic force microscopy (CAFM) with a CrO2-coated tip is used. The nanoscale spin domains of the CrO2 thin film were crosschecked by magnetic force microscopy (MFM). Notably, the CAFM exhibits the spin domains of the CrO2 thin film with higher resolution than the MFM, which may result from a local point contact between the nanoscale CrO2-coated tip and surface of the CrO2 thin film.  相似文献   

7.
Polarization reversal in ferroelectric nanomesas of polyvinylidene fluoride with trifluoroethylene has been probed by ultrahigh vacuum piezoresponse force microscopy in a wide temperature range from 89 to 326 K. In dramatic contrast to the macroscopic data, the piezoresponse force microscopy local switching was nonthermally activated and, at the same time, occurring at electric fields significantly lower than the intrinsic switching threshold. A "cold-field" defect-mediated extrinsic switching is shown to be an adequate scenario describing this peculiar switching behavior. The extrinsic character of the observed polarization reversal suggests that there is no fundamental bar for lowering the coercive field in ferroelectric polymer nanostructures, which is of importance for their applications in functional electronics.  相似文献   

8.
《Physics letters. A》2020,384(25):126609
Hybrid improper ferroelectrics have their electric polarization generated by two or more combined non-ferroelectric structural distortions such as the rotation and tilting of Ti-O octahedral in Ca3Ti2O7 (CTO) family. In this work, we prepared different thickness CTO thin films on Pt substrates by pulsed laser deposition, and investigated their ferroelectric polarization reversal and the current transport properties by using the piezoresponse force microscopy and conducting atomic force microscopy, respectively. It is found that the CTO films exhibit clear ferroelectric domain switching and ferroelectric resistance switching behaviors, and the maximum resistive ratios of CTO film reaches ∼1750. These results demonstrate that hybrid improper ferroelectrics CTO films are promising materials for being employed in non-volatile memory and logic devices.  相似文献   

9.
PZT铁电薄膜纳米尺度畴结构的扫描力显微术研究   总被引:10,自引:6,他引:4       下载免费PDF全文
利用扫描力显微术中压电响应模式原位研究了(111)择优取向的PZT60/40铁电薄膜的纳米尺度畴结构及其极化反转行为.铁电畴图像复杂的畴衬度与晶粒中的畴排列和晶粒的取向密切相关.直接观察到极化反转期间所形成的小至30nm宽的台阶结构,该台阶结构揭示了(111)取向的PZT60/40铁电薄膜在极化反转期间其畴成核与生长机理主要表现为铁电畴的纵向生长机理. 关键词: 畴结构 反转机理 PZT薄膜 扫描力显微术  相似文献   

10.
The magnetic properties of self-assembly cobalt nanowire arrays formed in anodic porous alumina template were investigated by nanosize imaging method and macroscopic magnetic measurement. We have successfully made a wire-by-wire observation of magnetization reversal of a cobalt nanowire array using magnetic force microscopy with a home-made FePt tip. The nanowires in this medium have uniaxial anisotropy with easy axis along the wire due to the large aspect ratio of the wires (30 nm in diameter and 300 nm in length). Considering the nanowires as single-domain structures, we can obtain the average DC demagnetization curve from nanosize images by calculating the number of wires in each magnetized direction, and the results agreed well with the DC demagnetization curve measured by macroscopic measurement. The magnetostatic field between wires was evaluated by a new nanosize imaging method. Macroscopic measurement shows that reversible magnetization occurs in this medium. Nanosize images of the remanent and saturated states prove that the reversible magnetization processes mainly take place inside individual wires and reversed wires induced by magnetostatic field just give a little contribution to the reversible magnetization.  相似文献   

11.
Magnetic force microscopy is a new method for imaging ferromagnetic domains with a high lateral resolution (10 nm). In this paper we give the basic tip parameters that have to be taken into account to achieve a quantitative image interpretation. For the electrochemically otched polycrystalline iron, nickel and cobalt wires, the tip-apex domain is found to be oriented along the tip axis, because of shape anisotropy. The stray field emerging from the tip apex is comparable to the size of the tip saturation field. The effective domain lengthL determines the image formation: the force due to magnetization patterns of scales which are large compared toL follow the point-dipole approximation. In the opposite case, a single-pole model is more appropriate. While a cobalt tip can be treated as an isolated domain, for nickel and iron a net polarization in the tip wire induced by the front apex-domain has to be considered. A new analytical theory provides an overall understanding of the image formation and allows the determination of the magnetic field vector and the estimation of its magnitude from measurements.  相似文献   

12.
Biogenic magnetite nanoparticles (MNP) extracted from the magnetotactic bacterium Magnetospirillum gryphiswaldense MSR-1 have been systematically studied by atomic force microscopy (AFM) and magnetic force microscopy (MFM). Isolated single MNP and chains of MNP were obtained from diluted MNP aqueous suspension dried on mica surfaces in a homogeneous in-plane magnetic field. The size of the MNP was determined by employing AFM tip deconvolution procedures. The obtained result has been confirmed by scanning electronic microscopy. Magnetic properties of isolated single MNP and chains of MNP in remanence and in the presence of external magnetic fields were investigated by MFM. In particular, the magnetization reversal of a two-particle chain has been revealed and the dipolar interaction between the MNP is estimated. The change in the magnetic contrast on application of an external magnetic field is consistent with the hysteresis curve obtained by cantilever magnetometry.  相似文献   

13.
We present a scheme for remotely addressing single quantum dots (QDs) by means of near-field optical microscopy that simply makes use of the polarization of light. A structure containing self-assembled CdTe QDs is covered with a thin metal film presenting sub-wavelength holes. When the optical tip is positioned some distance away from a hole, surface plasmons in the metal coating are generated which, by turning the polarization plane of the excitation light, transfer the excitation towards a chosen hole and induce emission from the underlying dots. In addition, our procedure gives valuable insight into the diffusion of photo-excited carriers in the QD plane that can put limits to the addressing scheme.  相似文献   

14.
Scanning force microscopy images of the Si(111)7×7 surface reconstruction are presented which are taken in the contact mode in ultrahigh vacuum. Topographic and lateral force data are acquired simultaneously. A special treatment of the sensing tip with PTFE helps to overcome the strong adhesion and wear effects that normally occur on this particular surface.  相似文献   

15.
The definition of the time varying force on a tip with internal degrees of freedom in atomistic molecular dynamics (MD) simulations of scanning force microscopy experiments is discussed. We show that the static expression for the tip force is inadequate for calculating force fluctuations within the MD simulations and suggest a different method of calculating the tip force. By studying the size of tip force fluctuations for different tip models and various tip positions with respect to the surface, we demonstrate that the new method works equally well in both static and dynamic cases.  相似文献   

16.
A nanometric source of second-harmonic (SH) light with unprecedented efficiency is demonstrated; it exploits the grazing-incidence illumination of a metal tip, which is conventionally used for atomic force microscopy, by 25-fs laser pulses of a high-energy Ti:sapphire oscillator. Tip scanning around the beam focus shows that the SH generation is strongly localized at its apex. The polarization dependence of the SH light complies with the model of an on-axis nonlinear oscillating dipole.  相似文献   

17.
The effects of adhesion hysteresis in the dynamic‐dissipation curves measured in amplitude‐modulation atomic force microscopy are discussed. Hysteresis in the interaction forces is shown to modify the dynamics of the cantilever leading to different power dissipation curves in the repulsive and attractive regimes. Experimental results together with numerical simulations show that power dissipation, as measured in force microscopy, is not always proportional to the energy dissipated in the tip–sample interaction process. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
The scanning electrostatic force microscopy (SEFM) can acquire information of surface structures in a non-contact way. We calculate the electrostatic force between the charged tip and polarized surface structure in SEFM in the framework of self-consistent integral equation formalism (SCIEF), incorporating the image method to treat the electrostatic coupling of substrate and tip. We consider two kinds of surface structures, one is the topographic structure on the surface, the other is the dielectric structure embedded in the substrate. The force pattern of the topographic structure shows a protrusion around the surface structure. However, the force pattern displays a hollow around an embedded structure with a dielectric constant less than that of substrate medium. For an embedded structure with a larger dielectric constant, the force pattern exhibits a protrusion, and the force signal is much weaker than that of the topographic structure. Therefore, it is expected that one may identify these surface structures from the pure electrostatic force information in SEFM. The force signal of the densely arranged dielectric pads is simply the superposition of force signal of each pad individually, the interference effect of electric field is not remarkable. Received: 26 March 1998 / Accepted: 9 June 1998  相似文献   

19.
Ferroelectric polarization can be switched by an external applied electric field and may also be reversed by a mechanical force via flexoelectricity from the strain gradient.In this study,we report the mechanical writing of an epitaxial BiFeO3(BFO)thin film and the combined action of an applied mechanical force and electric field on domain switching,where the mechanical force and electric field are applied using the tip of atomic force microscopy.When the applied force exceeds the threshold value,the upward polarization of the BFO thin film can be reversed by pure mechanical force via flexoelectricity;when an electric field is simultaneously applied,the mechanical force can reduce the coercive electric field because both the piezoelectricity from the homogeneous strain and the flexoelectricity from strain gradient contribute to the internal electric field in the film.The mechanically switched domains exhibit a slightly lower surface potential when compared with that exhibited by the electrically switched domains due to no charge injection in the mechanical method.Furthermore,both the mechanically and electrically switched domains exhibit a tunneling electroresistance in the BFO ferroelectric tunnel junction.  相似文献   

20.
Piezoresponse force microscopy is a powerful technique for nm-scale studies but is usually limited by response time. In this Letter, we report the first direct studies of ferroelectric capacitor switching on a submicrosecond time scale. Simultaneous domain imaging and sub-mus transient current measurements establish a direct relationship between polarization P(t) and domain kinetics. Switching times scale with capacitor size over an order of magnitude. Small capacitors, where polarization reversal is dominated by domain wall motion, switch faster at high fields but more slowly at low fields while larger capacitors do the reverse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号