首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The covalent attachment of [60]fullerene (C60) to two poly(vinyl chloride) (PVC) samples with different isotactic content is achieved by direct reaction in o‐dichlorobenzene (o‐DCB) solution in the presence of AIBN. The extent of fullerenation is controlled by varying the C60 feed ratio. The pendant C60‐chemically modified PVC polymers are soluble in tetrahydrofuran (THF) and have been characterized by UV–vis, NMR, FTIR, DSC, TGA, cyclic voltammetry, and SEM. The quantitative microstructural analysis after covalent attachment of the bulky C60 moiety to the PVC has been followed by 13C NMR spectroscopy. From the results it can be concluded that the modification of PVC by graft reaction through free radical reaction proceeds by a stereoselective mechanism. This conclusion has been confirmed on the basis of the increase of the glass‐transition temperature (Tg) and the thermal stability of the C60‐chemical modified PVC samples. The fullerenated PVCs obtained show good electron acceptor properties, as evidenced by electrochemical investigations. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5408–5419, 2007  相似文献   

2.
Addition of bulky C60 moiety, a powerful electron acceptor (EA = 2.6–2.8 eV), to the poly(p-bromostyrene)(PBS) by a novel organometallic reaction considerably changes the chemical and physical properties of this polymer. The product obtained is a “charm-bracelet” non-crosslinked brownish yellow polymer which is easily soluble in many common organic solvents, and has a single glass transition temperature [134.0°C vs. 83.2°C for poly(p-bromostyrene)], this being congruent with its chemical structure. Covalent attachment of C60 to the brominated polystyrene backbone is confirmed by a variety of techniques such as UV-VIS, FT-IR, TGA, DSC, SEM, ESR, GPC, and 13C-NMR. The results show that both the stereo-electronic effect and the steric hindrance of C60 have an important influence on the structure and physical properties of polymer. © 1996 John Wiley & Sons, Inc.  相似文献   

3.
Emerging technological applications for complex polymers require insight into the dynamics of these materials from a molecular and nanostructural viewpoint. To characterize the orientational response at these length scales, we developed a versatile rheooptical Fourier transform infrared (FTIR) spectrometer by combining rheometry, polarimetry, and FTIR spectroscopy. This instrument is capable of measuring linear infrared dichroism spectra during both small‐strain dynamic deformation and large‐strain irreversible deformation over a wide temperature range. The deformation response of quenched and slow‐cooled isotactic polypropylene (iPP) is investigated. In quenched iPP, under dynamic oscillatory strain at an amplitude of ~0.1%, the dichroism from the orientation of the amorphous chains is appreciably less than that from the crystalline region. At large irreversible strains, we measured the dichroic response for 12 different peaks simultaneously and quantitatively. The dichroism from the crystalline peaks is strong as compared to amorphous peaks. In the quenched sample, the dichroism from the crystalline region saturates at 50% strain, followed by a significant increase in the amorphous region dichroism. This is consistent with the notion that the crystalline regions respond strongly before the yield point, whereas the majority of postyielding orientation occurs in the amorphous region. Our results also suggest that the 841 cm?1 peak may be especially sensitive to the ‘smectic’ region orientation in the quenched sample. The response of the slow‐cooled sample at 70 °C is qualitatively similar but characterized by a stronger crystalline region dichroism and a weaker amorphous region dichroism, consistent with the higher crystallinity of this sample, and faster chain relaxation at 70 °C. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2539–2551, 2002  相似文献   

4.
Abstract

A new synthetic approach for the fabrication of core‐shell like conducting elastomers was described. The approach utilized the facile intermolecular self‐assembly of poly(dimethylsiloxane) (PDMS) in DMSO leading to formation of a core particle, while soluble oligoaniline (A x ) segments dispersed in the solution phase resembling a shell overlayer for building the morphology. This morphology was demonstrated by bis[penta(tetraanilinofullereno)] bis(aminopropyl)poly(dimethylsiloxane) [PDMS‐(F5A4)2] triblock co‐oligomers synthesized using a functionalized C60 derivative as a linker. Observation of 1H NMR spectroscopic responses on the PDMS particle formation in DMSO‐d 6 is consistent with the proposed core‐shell geometry with oligoaniline moieties located at the shell overlayer.  相似文献   

5.
The strain recovery of three syndiotactic polypropylenes (s‐PPs) differing in the percentage of [rrrr] pentad is investigated. A suitable method based on loading–unloading tests at constant displacement rate in tensile loading conditions is adopted to measure the residual and recovered strain components of the applied strain. The method allows to obtain a large amount of data from few tests and to explore a wide strain range. The dependence of the material's strain recovery on the applied strain is analyzed in relation to s‐PP strain‐induced microstructural changes and crystalline form transitions, which are reported in literature. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1276–1282  相似文献   

6.
A novel [60]fullerene pearl-necklace polymer, poly(4,4′-carbonylbisphenylene trans-2-[60]fullerenobisacetamide), was synthesized by a direct polycondensation of trans-2-[60]fullerenobisacetic acid with 4,4′-diaminobenzophenone in the presence of large excesses of triphenyl phosphite and pyridine. In the present polymer, [60]fullerene pearls and diamine linkers were attached to each other by methano-carbonyl connectors. The molecular weight Mw of the polymer was determined to be 4.5 × 104 on the basis of the TOF-MS, and a GPC analysis of the polymer using polystyrene standards showed a weight-average molecular weight of 5.3 × 104. The UV-vis spectrum of the resultant polymer in N,N-dimethylacetamide (DMAc) exhibited a broad absorption (λmax 310 nm, ε 2.1 × 104 L · mol−1 · cm−1), tailing to longer wavelengths, and a fluorenscence peak centered at 550 nm was observed in DMAc. There was observed a large downfield-shift of the cyclopropane methyne proton in the 1H-NMR spectra from 4.57 ppm of the ethyl ester to 5.78 ppm of the polyamide. These observations indicate that the present polyamide is a high-molecular-weight [60]fullerene pearl-necklace polymer and that the cyclopropane rings are efficient to make the [60]fullerene cages and the diamine components conjugatable. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3632–3637, 1999  相似文献   

7.
曾和平 《中国化学》2002,20(10):1007-1011
Photoinduced electron transfer(PET) processes between C60-C6H8SO and Tetrathiafulvalene(TTF) have been studied by nanosecond laser photolysis.Quantrm yiekds(φet) and rate constants of electron transfer(ket) from TTF to excited triplet state of[60] fullerene-containing cyclic sulphoxide in benzonitrile(BN) have been evaluated by observing the transient absorption bands in the NIR region.With the decay of excited triplet state of [60]fullerene-containing cyclic suplhoxide,the rise of radical anion of [60]fullerene-containing cyclic sulphoxinde is observed.  相似文献   

8.
9.
[60]Fullerenated poly(2‐hydroxyethyl methacrylate)s containing 0.6–3.0 wt % C60 were synthesized. These polymers are soluble in methanol and N,N‐dimethylformamide (DMF). [60]Fullerenated poly(2‐hydroxyethyl methacrylate)s with higher C60 contents are only sparingly soluble in DMF and virtually insoluble in other organic solvents. A loading of 1.2 wt % C60 in poly(2‐hydroxyethyl methacrylate) does not greatly affect its miscibility with poly(N‐vinyl‐2‐pyrrolidone), poly(1‐vinylimidazole), and poly(4‐vinylpyridine). © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1157–1166, 2002  相似文献   

10.
A single di(azahomo)[60]fullerene isomer was prepared for the first time by the reaction between [60]fullerene and isocyanurato-substituted azide. The structure of the product was established by 1H and 13C NMR, UV, and IR spectroscopy.  相似文献   

11.
The influence of low contents of a liquid crystalline polymer on the crystallization and melting behavior of isotactic polypropylene (iPP) was investigated using electron and optical microscopy, differential scanning calorimetry, and X-ray diffraction. In pure iPP, the α modification was found, whereas for iPP/Vectra blends at Vectra concentration <5%, both α and β forms were observed. The amount of β phase varied from 0.23 to 0.16. Optical microscopy showed that Vectra was able to nucleate both α and β forms. Non-isothermal crystallization produces a material with a strong tendency for recrystallization of the α and β forms (αα′ and ββ′ recrystallization) leading to double endotherms for both crystalline forms in DSC thermograms. Melting thermograms after isothermal crystallization at low temperatures showed a similar behavior. At values of Tc > 119 °C for the α form and Tc > 125 °C for the β form, only one melting endotherm was observed because enough perfect crystals, not susceptible to recrystallization, were obtained. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1949–1959, 2004  相似文献   

12.
Since the discovery of the methods for mass production of fullerenes', there has beengreat interest in the development of fullerene-containing polymeric materials'-' becausesuitably designed fullerene polymers not only possess good processability but also exhibitinteresting materials properties'-'. We have also attached C,o to polyphenylacetylenechains by a WCI,~catalyzed copolymerization reaction'-'. In this letter, we chose anacetylene monomer, that is, l-phenyl-butyne (PB), which can not …  相似文献   

13.
The complex melting behavior of isotactic polypropylene, after isothermal crystallization, was studied within the context of step‐like melting mechanisms which were previously proposed for high temperature polymers. The morphological characteristics of the melting process were also studied as a function of molecular weight, and close similarities were observed with respect to high temperature polymers. Positive birefringence crystals of low molecular weight samples developed double melting behavior in three steps. The first melting step was assigned to continuous melting of secondary crosshatch reversing lamellae, together with recrystallization of the remaining isothermal crystals. In the second melting step (first melting endotherm), crystals tended to lose their original coarse negative birefringence due to melting of secondary reversing branching. This effect rendered new, finer texture, but still negative birefringence crystals. In the third melting step (second melting endotherm), there was a combination of melting of two crystal populations, one consisting of the remaining fraction of reversing primary crystals, and the other consisting of nonreversing primary crystals. A crosshatch secondary branching model was therefore proposed to explain the overall results. Mixed birefringence spherulites of high molecular weight samples displayed similar, although proportional, behavior under identical crystallization and melting conditions corroborating the proposed melting mechanism. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2188–2200, 2008  相似文献   

14.
单加成环丙烷富勒烯膦酸酯衍生物的合成与电化学性能   总被引:1,自引:0,他引:1  
在Mn(OAc)3•2H2O催化下, C60分别和亚甲基二膦酸四乙酯、氰基亚甲基膦酸二乙酯或乙氧羰基亚甲基膦酸二乙酯在氯苯中回流, 生成3个单加成环丙烷富勒烯膦酸衍生物C60C(R)PO(OEt)2 [1, R=PO(OEt)2; 2, R=COOEt; 3, R=CN]. 与以前报道的Bingel反应法相比, 该方法副产物少并且缩短了反应时间. 采用循环伏安法发现1, 2的还原电位相对于C60发生负移, 而3的还原电位相对于C60却正移40 mV, 表明引入象氰基一样具有很强吸电子能力的取代基团, 可以改善富勒烯球的电化学性能, 合成电子接受能力较强的富勒烯衍生物.  相似文献   

15.
The solid‐state structure and properties of homogeneous copolymers of propylene and 1‐octene were examined. Based on the combined observations from melting behavior, dynamic mechanical response, morphology with primarily atomic force microscopy, X‐ray diffraction, and tensile deformation, a classification scheme with four distinct categories is proposed. The homopolymer constitutes Type IV. It is characterized by large α‐positive spherulites with thick lamellae, good lamellar organization, and considerable secondary crystallization. Copolymers with up to 5 mol % octene, with at least 28 wt % crystallinity, are classified as Type III. Like the homopolymer, these copolymers crystallize as α‐positive spherulites, however, they have smaller spherulites and thinner lamellae. Both Type IV and Type III materials exhibit thermoplastic behavior characterized by yielding with formation of a sharp neck, cold drawing, strong strain hardening, and small recovery. Copolymers classified as Type II have between 5 and 10 mol % octene with crystallinity in the range of 15–28%. Type II materials have smaller impinging spherulites and thinner lamellae than Type III copolymers. Moreover, the spherulites are α‐negative, meaning that they exhibit very little crystallographic branching. These copolymers also contain predominately α‐phase crystallinity. The materials in this category have plastomeric behavior. They form a diffuse neck upon yielding and exhibit some recovery. Type I copolymers have more than 10 mol % octene and less than 15% crystallinity. They exhibit a granular texture with the granules often assembled into beaded strings that resemble poorly developed lamellae. Type I copolymers crystallize predominantly in the mesophase. Materials belonging to this class deform with a very diffuse neck and also exhibit some recovery. They are identified as elastoplastomers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4357–4370, 2004  相似文献   

16.
The crystallinity of isotactic polypropylene (iPP), when deformed with plastic plane‐strain compression, was studied with wide‐angle X‐ray scattering (WAXS) and differential scanning calorimetry (DSC) techniques. A comparison of the obtained crystallinity data with annealed iPP samples was performed. The material used in this study was commercial iPP (weight‐average molecular weight = 117.400 g/mol; number‐average molecular weight = 17.300 g/mol). A significant decrease in the crystallinity was observed with increasing deformation pressure when the X‐ray method was employed, whereas only a small decrease was registered when the DSC method of crystallinity determination was used. However, the annealed iPP samples demonstrated a slight crystallinity increase when evaluated by both techniques. The reason for the difference between WAXS and DSC crystallinity results is discussed. This study of iPP specimens subjected to large deformation led us to the conclusion that the WAXS method provides accurate crystallinity values for the deformed material, whereas the values obtained by the DSC method do not reproduce the real crystallinity of the deformed material. This is due to the inherent heating process of the method, which causes a relaxation process and a significant change in the crystallinity of the deformed material, providing values nearer to its intrinsic equilibrium state. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 896–903, 2002  相似文献   

17.
Self‐assembly of nanoparticles (NPs) into nonclose‐packed (ncp), semi‐two‐dimensional (2D) arrays is of interest in a variety of applications. Of special interest are photochemically active surfactant‐like fullerene derivatives [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM). The study presented here characterizes the morphology and structure of patterns formed by a mixture of PCBM NP and an amphiphilic block‐copolymer tethered at the water–air interface (a surface brush) as a function of the concentration of poly(ethylene oxide) (PEO) dissolved in the liquid subphase. Theoretical modeling of the system shows that the concentration of PEO in the subphase mediates the dimensions of the surface brush and at high PEO concentrations induces a collapse of the brush at the solution–air interface. The state of the surface brush is suggested to tune the semi‐2D patterns observed in the experiments via lateral depletion interactions and, in particular, induce lateral phase separation of the PCBM‐block copolymer. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

18.
This article reports the use of a binary single‐site catalyst system for synthesizing comb‐branched polypropylene samples having isotactic polypropylene (iPP) backbones and atactic polypropylene (aPP) side chains from propylene feedstock. This catalyst system consisted of the bisiminepyridine iron catalyst {[2‐ArN?C(Me)]2C5H3N}FeCl2 [Ar = 2,6‐C6H3(Me)2] ( 1 ) and the zirconocene catalyst rac‐Me2Si(2‐MeBenz[e]Ind)2ZrCl2 ( 2 ). The former in situ generated 1‐propenyl‐ended aPP macromonomer, whereas the latter incorporated the macromonomer into the copolymer. The effects of reaction conditions, such as the catalyst addition procedure and the ratio of 1 / 2 on the branching frequency, were examined. Copolymer samples having a branching density up to 8.6 aPP side chains per 1000 iPP monomer units were obtained. The branched copolymers were characterized by 13C NMR and differential scanning calorimetry. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1152–1159, 2003  相似文献   

19.
Linear and symmetric star block copolymers of styrene and isoprene containing [C60] fullerene were synthesized by anionic polymerization and appropriate linking postpolymerization chemistry. In all block copolymers, the C60 was connected to the terminal polyisoprene (PI) block. The composition of the copolymers was kept constant (~30% wt PI), whereas the molecular weight of the diblock chains was varied. The polymers were characterized with a number of techniques, including size exclusion chromatography, membrane osmometry, and 1H NMR spectroscopy. The combined characterization results showed that the synthetic procedures followed led to well‐defined materials. However, degradation of the fractionated star‐shaped copolymers was observed after storage for 2 months at 4 °C, whereas the nonfractionated material was stable. To further elucidate the reasons for this degradation, we prepared and studied a four‐arm star copolymer with the polystyrene part connected to C60 and a six‐arm star homopolymer of styrene. These polymers as well as linear copolymers end‐capped, through ? N<, with C60 were stable. Possible reasons are discussed. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2494–2507, 2001  相似文献   

20.
Poly(propylene/neopenthyl terephthalate) random copolymers (PPT‐PNT) and poly(neopenthyl terephthalate) (PNT) were synthesized and subjected to molecular characterization. Afterwards, the polyesters were examined by TGA, DSC, andX‐ray. The copolymers, which displayed a good thermal stability, at room temperature appeared as semicrystalline materials: the main effect of copolymerization was a lowering in the amount of crystallinity and a decrease of the melting temperature with respect to homopolymer PPT. XRD measurements allowed the identification of the PPT crystalline structure in all cases. Amorphous samples were obtained after melt quenching, with the exception of PPT‐PNT5, and an increment of Tg as the content of NT units is increased was observed due to the effect of the side methylene groups in the polymeric chain. The Wood equation described well Tg‐composition data. Lastly, the presence of a rigid‐amorphous phase was evidenced in the copolymers, whose amount depended on composition and on thermal treatment. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 170–181, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号