首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Cu(0)/Me6‐TREN‐catalyzed single‐electron transfer mediated living radical polymerization (SET‐LRP) of methyl acrylate in the presence of the classic 4‐methoxyphenol free radical inhibitor was investigated. Kinetic experiments, combined with 1H NMR, and MALDI‐TOF MS analysis of the resulting polyacrylates demonstrated that SET‐LRP is a robust synthetic method that does not require the purification of the monomers to remove the radical inhibitor. It is anticipated that these results will contribute to the expansion of technological and fundamental applications of SET‐LRP since it allows the synthesis of polymers with a structural perfection that previously was not accessible by any other method, starting from unpurified monomers, solvents, initiators, and ligands. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3174–3181, 2008  相似文献   

2.
Single Electron Transfer‐Living Radical Polymerization (SET‐LRP) represents a robust and versatile method for the rapid synthesis of macromolecules with well defined topology. In SET‐LRP, certain combinations of solvents and ligands facilitate the disproportionation of in situ generated Cu(I) species into “nascent” Cu(0) and Cu(II) species. A combination of heterogeneous and “nascent” Cu(0) activation yields polymers with very high chain end functionality. Under suitable conditions the tolerance toward oxygen must be increased since Cu(0), the activator in SET‐LRP, acts as an oxygen scavenger in all inert gas purification systems. Here we demonstrate that SET‐LRP of methyl acrylate can be conducted in the presence of air. The addition of a small amount of reducing agent hydrazine hydrate to the reaction mixture reduces Cu2O generated by the oxidation of Cu(0) with air, regenerating Cu(0) and allowing for the synthesis of polymers with predictable molecular weight and perfect retention of chain end functionality. The kinetics plots obtained under these conditions were identical to these generated by degassed samples. High conversions were achieved within a very short reaction time. In these SET‐LRP experiments, the reagents were not deoxygenated or subjected to standard degassing procedures such as freeze‐pump‐thaw or nitrogen sparging. This simple SET‐LRP procedure provides an efficient and economical approach to the synthesis of functional macromolecules. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1190–1196, 2010  相似文献   

3.
Single‐electron transfer living radical polymerization (SET‐LRP) proceeds by an outer‐sphere single‐electron transfer mechanism that induces a heterolytic bond cleavage of the initiating and propagating R‐X (where X = Cl, Br, and I) species. Therefore, unlike the homolytic bond cleavage mechanism claimed for ATRP, SET‐LRP is expected to show a small dependence of the nature of the halide group on the apparent rate constant of activation. This means the R‐X with X = Cl, Br, and I must all be efficient initiators for SET‐LRP and no chain transfer must be observed in the case of initiators with X = Br and I. Here, we report the SET‐LRP of methyl acrylate initiated with the alkyl chlorides methyl‐2‐chloropropionate (MCP) and chloroform (CHCl3) and catalyzed by Cu(0)/Me6‐TREN/CuCl2 in DMSO at 25 °C. A combination of kinetic and structural analysis was used to elucidate the MCP and CHCl3 initiating behavior under SET‐LRP conditions, and to demonstrate the very small dependence of the SET‐LRP apparent rate constant of propagation on X while providing polymers with well defined architecture. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4917–4926, 2008  相似文献   

4.
SET‐LRP is mediated by a combination of solvent and ligand that promotes disproportionation of Cu(I)X into Cu(0) and Cu(II)X2. Therefore, the diversity of solvents suitable for SET‐LRP is limited. SET‐LRP of MA in a library of solvents with different equilibrium constants for disproportionation of Cu(I)X such as DMSO, DMF, DMAC, EC, PC, EtOH, MeOH, methoxyethanol, NMP, acetone and in their binary mixtures with H2O was examined. H2O exhibits the highest equilibrium constant for disproportionation of Cu(I)X. The apparent rate constant of the polymerization exhibits a linear increase with the addition of H2O. This is consistent with higher equilibrium constants for disproportionation generated by addition of H2O to organic solvents. Furthermore, with the exception of alcohols and carbonates, the rate constant of polymerization in binary mixtures could be correlated with the Dimroth‐Reichardt solvent polarity parameter. This is consistent with the single‐electron transfer mechanism proposed for SET‐LRP that involves a polar transition state. These experiments demonstrate that the use of binary mixtures of solvents with H2O provides a new, simple and efficient method for the elaboration of a large diversity of reaction media that are suitable for SET‐LRP even when one of the two solvents does not mediate disproportionation of Cu(I)X. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5577–5590, 2009  相似文献   

5.
Cu(0) was prepared via disproportionation of Cu(I)Br in the presence of Me6‐TREN in various solvents in a glove box. The resulting nanopowders were used as mimics of “nascent” Cu(0) catalyst in the single‐electron transfer living radical polymerization (SET‐LRP) of methyl acrylate (MA), providing faster polymerization than any commercial Cu(0) powder, Cu(0) wire, or Cu(I)Br and achieving 80% conversion in only 5 min reaction time. Despite the high rate, a living polymerization was observed with linear evolution of molecular weight, narrow polydispersity, no induction period, and high retention of chain‐end functionality. In addition to providing an unprecedentedly fast, yet controlled LRP of MA, these studies suggest that the very small “nascent” Cu(0) species formed via disproportionation in SET‐LRP are the most active catalysts. Thus, when bulk Cu(0) powder or wire may be the most abundant catalyst and dictates the overall kinetics, any Cu(0) produced via disproportionation will be rapidly consumed and contributes to the overall catalytic cycle. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 403–409, 2010  相似文献   

6.
A mechanistic comparison of the ATRP and SET‐LRP is presented. Subsequently, simulation of kinetic experiments demonstrated that, in the heterolytic outer‐sphere single‐electron transfer process responsible for the SET‐LRP, the activation of the initiator and of the propagating dormant species is faster than of the homolytic inner‐sphere electron‐transfer process responsible for ATRP. In addition, simulation experiments suggested that in both polymerizations the rate of deactivation is similar. In SET‐LRP, the Cu(II)X2/L deactivator is created by the disproportionation of Cu(I)X/L inactive species, while in ATRP its concentration is mediated by the bimolecular termination. The combination of higher rate of activation with the creation of deactivator via disproportionation provides, via SET‐LRP, an ultrafast synthesis of polymers with very narrow molecular weight distribution at room temperature. SET‐LRP is mediated by a catalytic amount of Cu(0), and under suitable conditions, bimolecular termination is virtually absent. Kinetic and simulation experiments have also demonstrated that the amount of water available in commercial solvents and monomers is sufficient to induce the disproportionation of Cu(I)X/L into Cu(0) and Cu(II)X2/L and, subsequently, to change the polymerization mechanism from ATRP to SET‐LRP. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1835–1847, 2007.  相似文献   

7.
The single‐electron transfer living radical polymerization (SET‐LRP) of methyl acrylate initiated with bromoform (CHBr3) and iodoform (CHI3) and catalyzed by Cu(0)/Me6‐TREN in DMSO at 25 °C provides a reliable method to prepare poly (methyl acrylate) (PMA) with active chain ends and controlled structure that can undergo subsequent functionalization to provide strategies for the synthesis of different block copolymers and other complex architectures. A detailed kinetic and structural analysis was used to assess the scope and the limitations of CHBr3 and CHI3 as initiators under SET‐LRP conditions. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 278–288, 2008  相似文献   

8.
The disproportionating solvent effect on the kinetics of single electron transfer living radical polymerization (SET‐LRP) during catalysis with nonactivated Cu(0) wire coated with Cu2O and activated Cu(0) wire free of Cu2O was studied. In solvents such as dimethyl sulfoxide, MeOH and ethylene carbonate that in conjunction with Me6‐TREN promote extensitve disproportionation of Cu(I)X, faster polymerizations were achieved upon switching from nonactivated Cu(0) wire to activated Cu(0) wire. The results showed that the substantial rate enhancement was accompanied with excellent control of molecular weight evolution and distribution, and high fidelity of chain‐end functionality. This can be attributed to a more effective equilibrium between activation and deactivation in the presence of Cu(0) free of Cu2O. In nondisproportionating solvents, the kinetics of SET‐LRP of methyl acrylate catalyzed by activated Cu(0) wire resembled that of the polymerizations catalyzed by nonactivated wire. This is the result of a competing effect between rapid activation and insufficient disproportionation. The absence of disproportionation effectively leads to the lack of first order kinetics, broad molecular weight distribution, significant loss of bromide chain‐end functionality, and therefore, the absence of a living polymerization. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

9.
A simple method for the activation of the Cu(0) wire used as catalyst in single‐electron transfer living radical polymerization (SET‐LRP) is reported. The surface of Cu(0) stored in air is coated with a layer of Cu2O. It is well established that Cu2O is a less reactive catalyst for SET‐LRP than Cu(0). We report here the activation of the Cu(0) wire under nitrogen by the reduction of Cu2O from its surface to Cu(0) by treatment with hydrazine hydrate. The kinetics of SET‐LRP of methyl acrylate (MA) catalyzed with activated Cu(0) wire in dimethyl sulfoxide (DMSO) at 25 °C demonstrated a dramatic acceleration of the polymerization and the absence of the induction period observed during SET‐LRP catalyzed with nonactivated Cu(0) in several laboratories. Exposure of the activated Cu(0) wire to air results in a lower apparent rate constant of propagation because of gradual oxidation of Cu(0) to Cu2O. This dramatic acceleration of SET‐LRP is similar to that observed with commercial Cu(0) nanopowder except that the polymerization provides excellent molecular weight evolution, very narrow molecular weight distribution and high polymer chain‐end functionality. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

10.
Disproportionation of Cu(I)X is the major step in Single‐Electron Transfer Living Radical Polymerization (SET‐LRP). The disproportionation of Cu(I)X mediated by Me6‐TREN in various solvents was studied through UV–vis spectroscopy and Dynamic Light Scattering (DLS). UV–vis experiments reveal that disproportionation is dependent on both solvent composition and concentration of Me6‐TREN, consistent with a revised equilibrium expression and corroborated by mathematical models. Electrochemistry data do not accurately predict the extent of disproportionation in the presence of Me6‐TREN. Exemplified by DMSO, a favored solvent for SET‐LRP, UV–vis spectroscopy shows that under certain conditions disproportionation is four‐orders of magnitude greater than the value reported from electrochemistry experiments. Through UV–vis and DLS analysis, it was demonstrated that DMSO, DMF, DMAC, and NMP, stabilize colloidal Cu(0), while acetone, EtOH, EC, MeOH, PC, and H2O facilitate agglomeration of Cu(0) particles. Additionally, for colloidal Cu(0) stabilizing solvents, the amount of ligand and solvent composition decide the particle size distribution. Therefore, the kinetics of SET‐LRP are cooperatively and synergistically determined by the complex interplay of solvent polarity, the extent of disproportionation in the solvent/ligand mixture, and the ability of that mixture to stabilize colloidal Cu(0) or control particle size distribution. The implications of these results for SET‐LRP are discussed. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5606–5628, 2009  相似文献   

11.
Polymerization of methyl acrylate (MA) catalyzed by Cu(0) is carried out in toluene using a range of alcohols and phenol as additives to facilitate the reaction. The polar/coordinating additives promote disproportionation of Cu(I) to Cu(0), the proposed active species in single electron transfer living radical polymerization (SET‐LRP), and Cu(II) whilst toluene maintains solubility of the reagents and products. In this work, the use of alcohols as additives is optimized. Polymerizations are monitored in real time using rapid chromatography to obtain conversion and molecular weight distribution data without the necessity of manual sampling. Rapid gel permeation chromatography with low angle laser light scattering detection is shown to be a viable method of obtaining molecular weight distribution data in real time compared with conventional analytical techniques. Moreover, the changes in CuBr2 concentration during SET‐LRP reactions are monitored online using a photodiode array detector. Finally, the kinetics of SET‐LRP of MA using an ultra pure highly porous Cu(0) is performed and a detailed discussion on the role of Cu(II) is provided. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

12.
The commercially available tris(2‐aminoethyl)amine (TREN) was used as ligand to mediate the single‐electron transfer‐living radical polymerization (SET‐LRP) of methyl acrylate in dimethyl sulfoxide initiated with the bifunctional initiator bis(2‐bromopropionyl)ethane and catalyzed by both nonactivated and activated Cu(0) wire. A comparative study between TREN and tris(2‐dimethylaminoethyl)amine (Me6‐TREN) ligand, that is more commonly used in SET‐LRP, demonstrated that TREN provided a slower polymerization but the chain‐ends functionality of the resulting bifunctional poly(methyl acrylate) was near quantitative and comparable to that obtained when Me6‐TREN was used as a ligand. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012.  相似文献   

13.
In this work, bimetallic zero‐valent metal (Fe(0) powder and Cu(0) powder) was used to mediate the single electron transfer‐living radical polymerization (SET‐LRP) of methyl methacrylate at 25 °C in dimethyl sulfoxide. Different feed ratios of [Fe(0)]0/[Cu(0)]0 (0/1.5, 0.5/1, 0.75/0.75, 1/0.5, and 1.3/0.2) were explored. With the increase of Fe(0) feed, the polymerization rate was mildly depressed with a prolonged induction period. While, the control over the molecular weights was improved upon the increase of Fe(0). A best control (initiation efficiency = 91%) was achieved at [Fe(0)]0/[Cu(0)]0 = 1/0.5. A further increase of Fe(0) to the feed ratio of [Fe(0)]0:[Cu(0)]0 = 1.3: 0.2 led to a uncontrolled polymerization. Explorations of available solvents and ligands for this polymerization confirmed the SET‐LRP mechanism. It was suggested that Fe(0) might act as a dual role in this process: one was the activation agent for Cu(0), which favored a better control over the molecular weights; The other was an alternative catalyst for the activation of R‐X or Pn‐X to generate radicals, which assured a comparable polymerization rate as that of Cu(0). This work provided an alternative and economical catalyst for SET‐LRP, and would eventually reinforce the SET‐LRP technique. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

14.
Polymers containing o‐nitrobenzyl esters are promising for preparation of light sensitive materials. o‐Nitrobenzyl methacrylate has already been polymerized by controlled ATRP or RAFT. Unfortunately, the radical polymerization of o‐nitrobenzyl acrylate (NBA) was not controlled until now due to inhibition and retardation effects coming from the nitro‐aromatic groups. Recent developments in the Single Electron Transfer–Living Radical Polymerization (SET–LRP) provide us an access to control this NBA polymerization and living character of this NBA SET–LRP is demonstrated. Effects of CuBr2 and ligand concentrations, as well as Cu(0) wire length on SET–LRP kinetics are shown presently. A first‐order kinetics with respect to the NBA concentration is observed after one induction period. SET–LRP proceeds with a linear evolution of molecular weight and a narrow distribution. High initiation efficiency close to 1 and high chain‐end functionality (~93%) are reached. Chain extension of poly(o‐nitrobenzyl acrylate) is realized with methyl acrylate (MA) to obtain well defined poly(o‐nitrobenzyl acrylate)‐b‐poly(methyl acrylate) (PNBA‐b‐PMA). Finally, light‐sensitive properties of PNBA are checked upon UV irradiation. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2192–2201  相似文献   

15.
Single electron transfer‐living radical polymerization (SET‐LRP) of methyl acrylate (MA) in methanol, catalyzed with nonactivated and activated Cu(0) wires, was performed in the presence of nondeoxygenated reagents and was investigated under a simple blanket of nitrogen. The addition of a small amount of hydrazine hydrate mediates the deoxygenation of the reaction mixture by the consumption of oxygen through its use to oxidize Cu(0) to Cu2O, followed by the reduction of Cu2O with hydrazine back to the active Cu(0) catalyst. SET‐LRP of MA in methanol in the presence of air requires a smaller dimension of Cu(0) wire, compared to the nonactivated Cu(0) wire counterpart. Activation of Cu(0) wire allowed the polymerization in air to proceed with no induction period, linear first‐order kinetics, linear correlation between the molecular weight evolution with conversion, and narrow molecular weight distribution. The retention of chain‐end functionality of α,ω‐di(bromo) poly(methyl acrylate) (PMA) prepared by SET‐LRP was demonstrated by a combination of experiments including 1H NMR spectroscopy and matrix‐assisted laser desorption ionization–time of flight mass spectrometry after thioetherification of α,ω‐di(bromo) PMA with thiophenol. In SET‐LRP of MA in the presence of limited air, bimolecular termination is observed only above 85% conversion. However, for bifunctional initiators, the small amount of bimolecular termination observed at high conversion maintains a perfectly bifunctional polymer. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

16.
Crystalline nanocellulose (CNC) was grafted with poly(methyl acrylate) (PMA) to yield modified CNC that is readily dispersed in a range of organic solvents [including tetrahydrofuran, chloroform, dimethylformamide, and dimethyl sulfoxide (DMSO)], in contrast to native CNC which is dispersible primarily in aqueous solutions. First, a CNC macroinitiator with high bromine initiator density was prepared through a 1,1′‐carbonyldiimidazole‐mediated esterification reaction in DMSO‐based dispersant. MA was then grafted from the CNC macroinitiator through SET living radical polymerization (LRP) at room temperature using Cu(0) (copper wire) as the catalyst. The LRP grafting proceeded rapidly, with ~30% monomer conversion achieved within 30 min, yielding approximately six times the mass of PMA with respect to CNC macroinitiator. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2800–2808  相似文献   

17.
Here we reported the acid dissolution of copper oxides as a methodology for the activation of Cu(0) wire used as catalyst in single‐electron transfer living radical polymerization (SET‐LRP). In this method, the oxide layer on the surface of commercial Cu(0) wire was removed by dissolution in a concentrated acid such as nitric acid, glacial acetic acid and hydrochloric acid. SET‐LRP of methyl acrylate catalyzed with Cu(0) wire activated with acids showed comparable k value to that of the nonactivated Cu(0) wire‐catalyzed counterpart. However, the polymerizations catalyzed with activated Cu(0) wire proceeded with no initial induction period, predictable molecular weight evolution with conversion, and narrow molecular weight distribution. Regardless of the activation method, the chain end functionality of α,ω‐di(bromo) poly(methyl acrylate) (PMA) prepared from SET‐LRP initiated with a bifunctional initiator is extremely high, maintaining a 100% chain end functionality at ~90% monomer conversion. The degree of bimolecular termination increased as the polymerization exceeds 92% conversion. However, for binfunctional initiators this small amount of bimolecular termination at high conversion maintains a perfectly bifunctional polymer. Structural analysis by MALDI‐TOF upon thioetherification of α,ω‐di(bromo) PMA with thiophenol and 4‐fluorothiophenol confirmed the high fidelity of bromide chain ends. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

18.
Cu(0) mediated living radical polymerization was successfully applied to synthesize graft‐copolymers from the hemicellulose acetylated galactoglucomannan. Functionalizing the polysaccharide backbone with α‐bromo isobutyric acid gave rise to a macroinitiator for single‐electron‐transfer mediated living radical polymerization (SET‐LRP). This macroinitiator with a degree of substitution of 0.15 or 0.20 was used in the graft‐SET‐LRP of methyl methacrylate in dimethyl sulfoxide as well as N‐isopropyl acrylamide and acrylamide in water. Kinetic analyses confirm conversions of up to 73% and a controlled behavior of the SET‐LRP process providing high molecular weight hemicellulose‐based hybrid copolymers with a brush‐like architecture. Derived graft‐copolymers varied significantly in solubility properties, ranging from hydrophobic via temperature responsive water‐solubility to water‐soluble. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

19.
We demonstrate the living radical polymerization of tert‐butyl acrylate (tBA) applying the SET mechanism, employing methyl 2‐bromopropionate (MBP) as initiator in dimethyl sulfoxide (DMSO) at ambient temperature. It is observed that introducing copper bromide into the catalyst system is necessary for controlling on the SET‐LRP polymerization of tBA. In this work, we make major investigation for the effect of the different stoichiometry quantity of copper bromide on the polymerization. Experiments show that the polymerization achieves better control with increasing the stoichiometry quantity of copper(II) deactivator. The structural analysis of the resulting polymers by 1H NMR demonstrates the successful synthesis of poly(tBA)s by SET‐LRP in DMSO. Moreover, this work is helpful to the SET‐LRP of other monomers and is expected to expand the application of SET‐LRP. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2793–2797, 2010  相似文献   

20.
Atom transfer radical polymerization (ATRP) and single electron‐transfer living radical polymerization (SET‐LRP) both utilize copper complexes of various oxidation states with N‐ligands to perform their respective activation and deactivation steps. Herein, we utilize DFT (B3YLP) methods to determine the preferred ligand‐binding geometries for Cu/N‐ligand complexes related to ATRP and SET‐LRP. We find that those ligands capable of achieving tetrahedral complexes with CuI and trigonal bipyramidal with axial halide complexes with [CuIIX]+ have higher energies of stabilization. We were able to correlate calculated preferential stabilization of [CuIIX]+ with those ligands that perform best in SET‐LRP. A crude calculation of energy of disproportionation revealed that the same preferential binding of [CuIIX]+ results in increased propensity for disproportionation. Finally, by examining the relative energies of the basic steps of ATRP and SET‐LRP, we were able to rationalize the transition from the ATRP mechanism to the SET‐LRP mechanism as we transition from typical nonpolar ATRP solvents to polar SET‐LRP solvents. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4950–4964, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号