首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this work, we have synthesized a polycation and a polyanion via a combination of oxyanion‐initiated polymerization and polymer reaction, and then developed a novel approach to prepare a controlled magnetic target gene carrier with magnetic Fe3O4 nanoparticles as core and poly(ethylene glycol) (PEG) segment as corona via layer‐by‐layer (LbL) assembly and shell‐crosslinking. Magnetic nanoparticles (MNPs) were first modified by poly[2‐(dimethylamino)ethyl methacrylate] (PDMAEMA) via radical polymerization. The resulting MNPs were used to compact deoxyribonucleic acid (DNA) through LbL assembly, involving four steps: ( 1 ) the binding of DNA to the polycation PDMAEMA on the surface of MNPs; ( 2 ) the produced particles in Step 1 with negative charge interacting with additional polycation ethoxy group end‐capped PDMAEMA (EtO‐PDMAEMA) homopolymer, leading to a positive charge surface; ( 3 ) using carboxyl group (‐COO) of poly(methacrylic acid) (PMAA) in a diblock copolymer (MePEG2000‐b‐PMAASH) as polyanion, which has partial mercapto groups (‐SH) in PMAA segment, to interact with the particles produced in Step 2; ( 4 ) the shell of the composite nanoparticle was crosslinked by oxidizing the ‐SH groups of the MePEG2000‐b‐PMAASH to form disulfide linkage (S? S). All the processes of LbL assembly were investigated by agarose gel retardation assay and zeta potential measurements. The in vitro cytotoxicity analysis proves that polyions/DNA MNPs have excellent properties and potential applications as gene carriers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

2.
The fabrication of controlled molecular architectures is essential for organic devices, as is the case of emission of polarized light for the information industry. In this study, we show that optimized conditions can be established to allow layer‐by‐layer (LbL) films of poly(p‐phenylene vinylene) (PPV)+dodecylbenzenesulfonate (DBS) to be obtained with anisotropic properties. Films with five layers and converted at 110 °C had a dichroic ratio δ = 2.3 and order parameter r = 34%, as indicated in optical spectroscopy and emission ellipsometry data. This anisotropy was decreased with the number of layers deposited, with δ = 1.0 for a 75‐layer LbL PPV + DBS film. The analysis with atomic force microscopy showed the formation of polymer clusters in a random growth process with the normalized height distribution being represented by a Gaussian function. In spite of this randomness in film growth, the self‐covariance function pointed to a correlation between clusters, especially for thick films. In summary, the LbL method may be exploited to obtain both anisotropic films with polarized emission and regular, nanostructured surfaces. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

3.
Polystyrene‐core–silica‐shell hybrid particles were synthesized by combining the self‐assembly of nanoparticles and the polymer with a silica coating strategy. The core–shell hybrid particles are composed of gold‐nanoparticle‐decorated polystyrene (PS‐AuNP) colloids as the core and silica particles as the shell. PS‐AuNP colloids were generated by the self‐assembly of the PS‐grafted AuNPs. The silica coating improved the thermal stability and dispersibility of the AuNPs. By removing the “free” PS of the core, hollow particles with a hydrophobic cage having a AuNP corona and an inert silica shell were obtained. Also, Fe3O4 nanoparticles were encapsulated in the core, which resulted in magnetic core–shell hybrid particles by the same strategy. These particles have potential applications in biomolecular separation and high‐temperature catalysis and as nanoreactors.  相似文献   

4.
Thin films were fabricated layer‐by‐layer (LbL) via ionic bonds formed between a cationic ionomer and an anionic ionomer, which were produced via proton transfer from poly(styrene‐co‐styrenesulfonic acid) to poly(methyl methacrylate‐co‐4‐vinylpyridine) in an organic solvent, tetrahydrofuran. Ionic contents of the ionomers were very low down to 5.6 mol %, much lower than usual polyelectrolytes. The build up of the LbL films was demonstrated by UV/vis spectroscopy: the absorbance of the phenyl rings in styrene residues increased with the number of depositions (thus the number of layers). Transmission electron microscopy observation of strained thin films showed unique deformation mode, involving many bands that developed both in the parallel and perpendicular directions to the stress axis. This is quite different from the deformation modes seen for ionomer blend films and for coextruded polystyrene/poly(methyl methacrylate) multilayer tapes. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 50: 101–105, 2012  相似文献   

5.
Nanocomposite films [Ag/(PAH‐PSS)nPAH]m were fabricated on a silicon substrate using a time‐ and cost‐efficient spin‐assisted layer‐by‐layer (SA‐LbL) self‐assembly technique. A virtually monolayer‐like layer of self‐assembled silver nanoparticles was formed when deposition time increased to 30 min. It was found that polymer multilayers could effectively decrease the resistivity of silver nanoparticle monolayer, which was far higher than that of bulk silver metal; however, the resistivity of Ag/(PAH‐PSS)nPAH multilayer films increased along with the increasing of the number of polymer bilayers. XPS investigations showed that silver nanoparticles were partially oxidized, which might be the major cause of the high resistivity of silver nanoparticle monolayer. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
The behavior of self‐assembly processes of nanoscale particles on plasma membranes can reveal mechanisms of important biofunctions and/or intractable diseases. Self‐assembly of citrate‐coated gold nanoparticles (cAuNPs) on liposomes was investigated. The adsorbed cAuNPs were initially fixed on the liposome surfaces and did not self‐assemble below the phospholipid phase transition temperature (Tm). In contrast, anisotropic cAuNP self‐assembly was observed upon heating of the composite above the Tm, where the phospholipids became fluid. The number of self‐assembled NPs is conveniently controlled by the initial mixing ratio of cAuNPs and liposomes. Gold nanoparticle protecting agents strongly affected the self‐assembly process on the fluidic membrane.  相似文献   

7.
Numerous recent publications detail higher absorption and photovoltaic performance within organic photovoltaic (OPV) devices which are loaded with Au or Ag nanoparticles to leverage the light management properties of the localized surface plasmon resonance (LSPR). This report details the impact upon film morphology and polymer/nanoparticle interactions caused by incorporation of polystyrene‐coated Au nanoparticles (Au/PS) into the P3HT:PC61BM bulk heterojunction film. Nanostructural analysis by transmission electron microscopy and X‐ray scattering reveals tunable Au/PS particle assembly that depends upon the choice of casting solvent, polymer chain length, film drying time, and Au/PS particle loading density. This Au/PS particle assembly has implications on the spectral position of the Au nanoparticle LSPR, which shifts from 535 nm for individually dispersed particles in toluene to 650 nm for particles arranged in large clusters within the P3HT:PC61BM matrix. These results suggest a critical impact from PS/P3HT phase separation, which causes controlled assembly of a separate Au/PS phase in the nanoparticle/OPV composite; controlled Au/PS phase formation provides a blueprint for designing AuNP/OPV hybrid films that impart tunable optical behavior and potentially improve photovoltaic performance. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 709–720  相似文献   

8.
In this work, Fe3O4/polystyrene/poly(N‐isopropylacryl amide‐co‐methylacrylate acid) (Fe3O4/PS/P(NIPAAM‐co‐MAA)) magnetic composite latex was synthesized by the method of two stage emulsion polymerization. In this reaction system, 2,2′‐azobis(2‐methyl propionamidine) dihydrochloride (AIBA) was used as initiator to initiate the first stage reaction and second stage reaction. The Fe3O4 particles were prepared by a traditional coprecipitation method. Fe3O4 particles were surface treated by either PAA oligomer or lauric acid to form the stable ferrofluid. The first stage for the synthesis of magnetic composite latex was to synthesize PS in the presence of ferrofluid by soapless emulsion polymerization to form the Fe3O4/PS composite latex particles. Following the first stage of reaction, the second stage of polymerization was carried out by the method of soapless emulsion polymerization with NIPAAM and MAA as monomers and Fe3O4/PS latex as seeds. The magnetic composite particles, Fe3O4/PS/P(NIPAAM‐co‐MAA), were thus obtained. The mechanism of the first stage reaction and second stage reaction were investigated. Moreover, the effects of PAA and lauric acid on the reaction kinetics, morphology, and particle size distribution were studied. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3912–3921, 2007  相似文献   

9.
A simple route to organic–inorganic (O/I) nano‐objects with different morphologies through polymerization‐induced block copolymer self‐assembly is described. The synthetic strategy relies on the chain‐extension of polyhedral oligomeric silsesquioxanes (POSS)‐containing macro‐CTA (PMAiBuPOSS13 and PMAiBuPOSS19) with styrene at 120 °C in octane, a selective solvent of the POSS‐containing block. The polymerization system was proven to afford a plethora of O/I nano‐objects, such as spherical micelles, cylindrical micelles, and vesicles depending on the respective molar masses of the PMAiBuPOSS and polystyrene (PS) blocks. The cooling procedure was also proven to be a crucial step to generate particles with a unique morphology. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4558–4564  相似文献   

10.
We have demonstrated directed self‐assembly of poly(styrene‐b‐dimethylsiloxiane) (PS‐b‐PDMS) down to sub‐10‐nm half‐pitch by using grating Si substrate coated with PDMS. The strong segregation between PS and PDMS enables us to direct the self‐assembly in wide grooves of the grating substrate up to 500 nm in width. This process can be applied to form various type of sub‐10‐nm stripe pattern along variety of grating shape. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

11.
Dual‐responsive micrometer‐sized core‐shell composite polymer particles were prepared by dispersion polymerization followed by seeded copolymerization. Polystyrene (PS) particles prepared by dispersion polymerization were used as core particles. N‐isopropyl acrylamide (NIPAM) and methacrylic acid (MAA) were used to induce dual‐responsive that is thermo‐ and pH‐responsive properties in the shell layer of composite polymer particles, prepared by seeded copolymerization with PS core particles. Temperature‐ and pH‐dependent adsorption behaviors of some macromolecules on composite polymer particles indicate that produced composite polymer particles exhibit dual‐responsive surface properties. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Monodispersed micron‐sized polyaniline (PANi) composite particles were synthesized by chemically oxidative polymerization of aniline in the presence of functional porous polymer particles. The formation of the PANi‐coated composite particles was confirmed by scanning electron microscopy. Electrorheological (ER) properties of the monosized composite particle suspensions were then investigated under different DC electric fields by altering the particle characteristics. The ER effect of the PANi composite suspensions was largely dependent on the composition ratio (PANi loading), the particle conductivity, and the particle concentration. Dynamic oscillation measurements revealed that the applied electric field induced the viscoelastic property of the ER suspensions by generating the chain structures of the suspended particles. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1163–1170, 2002  相似文献   

13.
Hollow structures show both light scattering and light trapping, which makes them promising for dye‐sensitized solar cell (DSSC) applications. In this work, nanoparticulate hollow TiO2 fibers are prepared by layer‐by‐layer (LbL) self‐assembly deposition of TiO2 nanoparticles on natural cellulose fibers as template, followed by thermal removal of the template. The effect of LbL parameters such as the type and molecular weight of polyelectrolyte, number of dip cycles, and the TiO2 dispersion (amorphous or crystalline sol) are investigated. LbL deposition with weak polyelectrolytes (polyethylenimine, PEI) gives greater nanoparticle deposition yield compared to strong polyelectrolytes (poly(diallyldimethylammonium chloride), PDDA). Decreasing the molecular weight of the polyelectrolyte results in more deposition of nanoparticles in each dip cycle with narrower pore size distribution. Fibers prepared by the deposition of crystalline TiO2 nanoparticles show higher surface area and higher pore volume than amorphous nanoparticles. Scattering coefficients and backscattering properties of fibers are investigated and compared with those of commercial P25 nanoparticles. Composite P25–fiber films are electrophoretically deposited and employed as the photoanode in DSSC. Photoelectrochemical measurements showed an increase of around 50 % in conversion efficiency. By employing the intensity‐modulated photovoltage and photocurrent spectroscopy methods, it is shown that the performance improvement due to addition of fibers is mostly due to the increase in light‐harvesting efficiency. The high surface area due to the nanoparticulate structure and strong light harvesting due to the hollow structure make these fibers promising scatterers in DSSCs.  相似文献   

14.
The layer‐by‐layer (LbL) self‐assembly has been used to fabricate polymer thin films on any solid substrates. The multilayer polymer thin films are constructed by alternating adsorption of anionic and cationic polymers. Polyelectrolyte multilayer ultrathin films containing anionic poly[2‐(thiophen‐3‐yl)ethyl methacrylate‐co‐methacrylic acid]; P(TEM‐co‐MA) and cationic poly[4‐(9H‐carbazol‐9‐yl)‐N‐butyl‐4‐vinyl pyridium bromide]; P4VPCBZ, were fabricated. The growth of multilayer ultrathin films was followed by UV–Vis absorption spectrophotometer and surface plasmon resonance spectroscopy (SPR). The deposition of P(TEM‐co‐MA)/P4VPCBZ as multilayer self‐assembled ultrathin films regularly grow which showed linear growth of absorbance and thickness with increasing the number of layer pair. Cross‐linking of the layers was verified by cyclic voltammetry (CV), UV–Vis spectrophotometry and electrochemical surface plasmon resonance (EC‐SPR) spectroscopy with good electro‐copolymerizability. This was verified by spectroelectrochemistry. The SPR angular‐reflectivity measurement resulted in shifts to a higher reflectivity according to the change in the dielectric constant of the electropolymerized film. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
In this work, an iron oxide (Fe3O4)/polystyrene (PS)/poly(N‐isopropylacryl amide‐co‐methacrylic acid) [P(NIPAAM–MAA)] thermosensitive magnetic composite latex was synthesized by the method of two‐stage emulsion polymerization. The Fe3O4 particles were prepared by a traditional coprecipitation method and then surface‐treated with either a PAA oligomer or lauric acid to form a stable ferrofluid. The first stage for the synthesis of the thermosensitive magnetic composite latex was to synthesize PS in the presence of a ferrofluid by emulsion polymerization to form Fe3O4/PS composite latex particles. Following the first stage of reaction, the second stage of polymerization was carried out with N‐isopropylacryl amide and methacrylic acid as monomers and with Fe3O4/PS latex as seeds. The Fe3O4/PS/[P(NIPAAM–MAA)] thermosensitive magnetic particles were thus obtained. The effects of the ferrofluids on the reaction kinetics, morphology, and particle size of the latex were discussed. A reaction mechanism was proposed in accordance with the morphology observation of the latex particles. The thermosensitive property of the thermosensitive magnetic composite latex was also studied. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3062–3072, 2007  相似文献   

16.
Two well‐defined heptablock quaterpolymers of the ABCDCBA type [Α: polystyrene (PS), B: poly(butadiene) with ~90% 1,4‐microstructure (PB1,4), C: poly(isoprene) with ~55% 3,4‐microstructure (PI3,4) and D: poly(dimethylsiloxane) (PDMS)] were synthesized by combining anionic polymerization high vacuum techniques and hydrosilylation/chlorosilane chemistry. All intermediates and final products were characterized by size exclusion chromatography, membrane osmometry, and proton nuclear magnetic resonance spectroscopy. Fourier transform infrared spectroscopy was used to further verify the chemical modification reaction of the difunctional PDMS. The self‐assembly in bulk of these novel heptablock quarterpolymers, studied by transmission electron microscopy and small angle X‐ray scattering, revealed 3‐phase 4‐layer alternating lamellae morphology of PS, PB1,4, and mixed PI3,4/PDMS domains. Differential scanning calorimetry was used to further confirm the miscibility of PI3,4 and PDMS blocks. It is the first time that PDMS is the central segment in such multiblock polymers (≥3 chemically different blocks). © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1443–1449  相似文献   

17.
Three polystyrene (PS)/clay hybrid systems have been prepared via in situ polymerization of styrene in the presence of unmodified sodium montmorillonite (Na‐MMT) clay, MMT modified with zwitterionic cationic surfactant octadecyldimethyl betaine (C18DMB) and MMT modified with polymerizable cationic surfactant vinylbenzyldimethyldodecylammonium chloride (VDAC). X‐ray diffraction and TEM were used to probe mineral layer organization and to expose the morphology of these systems. The PS/Na‐MMT composite was found to exhibit a conventional composite structure consisting of unintercalated micro and nanoclay particles homogeneously dispersed in the PS matrix. The PS/C18DMB‐MMT system exhibited an intercalated layered silicate nanocomposite structure consisting of intercalated tactoids dispersed in the PS matrix. Finally, the PS/VDAC‐MMT system exhibited features of both intercalated and exfoliated nanocomposites. Systematic statistical analysis of aggregate orientation, characteristic width, length, aspect ratio, and number of layers using multiple TEM micrographs enabled the development of representative morphological models for each of the nanocomposite structures. Oxygen barrier properties of all three PS/clay hybrid systems were measured as a function of mineral composition and analyzed in terms of traditional Nielsen and Cussler approaches. A modification of the Nielsen model has been proposed, which considers the effect of layer aggregation (layer stacking) on gas barrier. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1733–1753, 2007  相似文献   

18.
Chitosan/palladium {CTS/Pd}n composite multilayer film was assembled based on layer‐by‐layer self‐assembly technique and in‐situ photo‐chemical reduction reaction, in which the CTS plays the role of a photo‐reduction agent and an assembly reagent. Transmission electron microscopy (TEM) shows that spherical Pd nanoparticles with diameter of 20 nm are well‐dispersed in the composite multilayer films, and the size of Pd nanoparticles increased gradually with the extension of illumination time. Besides, the {CTS/Pd}n composite multilayer film exhibits linear, uniform and regular layer‐by‐layer growth. Furthermore, the {CTS/Pd}n composite multilayer film presents an excellent catalytic properties for oxygen reduction, and it has potential application in energy, chemical synthesis and biological processes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Poly(methyl methacrylate) (PMMA)–polystyrene (PS) composite polymer particles were synthesized in the presence of a surfactant by two‐stage seeded emulsion polymerization. The first stage was the synthesis of PMMA particles by soapless emulsion polymerization; the second stage was the synthesis of the PMMA–PS composite polymer particles with the PMMA particles as seeds. In the second stage of the reaction, three kinds of surfactants—sodium laurate sulfate (SLS), polyoxyethylene (POE) sorbitan monolaurate (Tween 20), and sorbitan monolaurate (Span 20)—were used to synthesize the PMMA–PS composite particles. Both the properties and concentrations of the surfactants influenced the morphology of the composite particles significantly. Core–shell composite particles, with PS as the shell and PMMA as the core, were synthesized in the presence of a low concentration of the hydrophilic surfactant SLS. This result was the same as that in the absence of the surfactant. However, a low concentration of Tween 20 led to composite particles with a core/strawberry‐like shell morphology; the core region was a PS phase, and the strawberry‐like shell was a PS phase dispersed in a PMMA phase. With an increase in the concentration of SLS, the morphology of the composite particles changed from core (PMMA)–shell (PS) to core (PS)–shell (PMMA). Moreover, the effects of a high concentration of Tween 20 or Span 20 on the morphology of the PMMA–PS composite particles were investigated in this study. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2224–2236, 2005  相似文献   

20.
Polyacrylonitrile (PAN) composite membranes with surface properties designed by either a chemical modification with ethylenediamine (EDA), or layer‐by‐layer (LbL) polyelectrolyte adsorption were investigated in this paper. Fourier‐transformed infrared (FTIR) spectroscopy and streaming potential measurements showed that the first step of the reaction with EDA in gas phase was the formation of ammonium salts with the reactive carboxylic groups present on the surface of the starting membrane. Part of the ammonium carboxylate groups was transformed in secondary amide linkages by a heat‐induced reaction. Poly(sodium styrenesulfonate) (NaPSS) and a polycation containing about 95 mol % of N,N‐dimethyl‐2‐hydroxypropyleneammonium chloride units in the backbone (PCA5) were used as opposite polyions in the LbL film construction. The adsorbed polyion amount per every layer was controlled by the nature and concentration of the supporting electrolyte in polyelectrolyte deposition solution (NaBr and KBr). An almost linear increase of the adsorbed polyion amount versus the layer pair number was observed. The swelling degree (SD) in pure alcohols of the LbL‐modified PAN composite membrane decreased with the increase of the solvent polarity and with the decrease of the pore volume by pore filling with polyelectrolyte complex multilayer. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4161–4171, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号