共查询到20条相似文献,搜索用时 0 毫秒
1.
Jlidi Jarray Fadhel Ben Cheikh Larbi Faustine Vanhulle André Dubault Jean Louis Halary 《Macromolecular Symposia》2003,198(1):103-116
Various PVDF/PMMA (poly(vinylidene fluoride)/poly(methyl methacrylate)) blends were selected for mechanical testing in compression. At low PVDF content (less than 50/50 w/w), the blends remain amorphous and PVDF and PMMA are fully miscible. In PVDF-richer blends, PVDF crystallizes in part, leading to a PMMA-enriched homogeneous amorphous phase. In this study, the degree of crystallinity was set at equilibrium by appropriate annealing of the samples before testing. Mechanical analysis was focused on the low deformation range, and especially on the yield region. Depending on the test temperature and blend composition, three types of response were identified, depending on whether plastic deformation is influenced: 1) by the PMMA secondary relaxation motions, 2) by the PVDF/PMMA glass transition motions, or 3) by the crystallite-constrained PVDF chains. 相似文献
2.
Wenzhong Ma Shuangjun Chen Jun Zhang Xiaolin Wang Wenhu Miao 《Journal of Polymer Science.Polymer Physics》2009,47(3):248-260
Poly(vinylidene fluoride) (PVDF) blend microporous membranes were prepared by PVDF/poly(methyl methacrylate) blend (with mass ratio = 70/30) via thermally induced phase separation. Benzophenone (BP) and methyl salicylate (MS) were used as diluents. The phase diagram calculations were carried out in terms of a pseudobinary system, considering the PVDF blend to be one component. The crytallization behaviors of PVDF in the dilutions were detected by differential scanning calorimetry measurement. In these two systems, the melting and crystallization temperatures leveled off in the low polymer concentration (<40 wt %), but shifted to a higher temperature when the polymer concentration >40 wt %. The calculated crystallinity of PVDF for samples with low polymer concentrations was greater than those with high polymer concentrations, because of the limited mobility of polymer chains at a high polymer concentration. The membrane structure as determined by scanning electron microscopy depended on the phase separation mechanism. The quenched samples mainly illustrated the occurrence of crystallization on the same time scale as the liquid–liquid phase separated, resulting in the obvious spherulitic structure with small pores in the spherulites. As the polymer concentration increased, the size of the spherulites and pores within the spherulite was decreased. The evaluated porosity for BP diluted system was higher than that for MS diluted system, and decreased with the increased polymer concentration. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 248–260, 2009 相似文献
3.
Lucien Laiarinandrasana Yannick Nziakou Jean Louis Halary 《Journal of polymer science. Part A, Polymer chemistry》2012,50(24):1740-1747
The fracture behavior of blends of poly(vinylidene fluoride) and poly(methyl methacrylate) was investigated all over the composition range. A detailed analysis of the net stress versus crack opening displacement curves was performed. Fracture surface observations allowed statements on the process zone characteristics ahead of the crack tip. For the amorphous blends, the crack initiation energy is well related to the glass transition temperature. For the semicrystalline blends, the fracture energy is correlated with the degree of crystallinity. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012 相似文献
4.
The miscibility of blends of semicrystalline poly(vinylidene fluoride)(PVF2) and poly(vinyl methyl ketone) (PVMK) along with surface characterization were investigated using the inverse gas chromatography method (IGC), over a range of blend compositions and temperatures. Three chemically different families, alkanes, acetates, and alcohols, were utilized for this study. The values of the PVF2‐PVMK interaction parameters were found to be slightly positive for most of the solutes used, although some degree of miscibility was found at all compositions. Miscibility was greatest at a 50:50 w/w composition of the blend. The interaction parameters obtained from IGC are in excellent agreement with those obtained using calorimetry on the same blends. The calculated molar heat of sorption of alkanes, acetates, and alcohols into the blend layer reveal the impact of the combination of dispersive and hydrogen bonding forces on the interaction of solutes with the blend's backbone. The dispersive component of the surface energy was found to range from 18.70–64.30 mJ/m2 in the temperature range of 82–163 °C. A comparison of the blend's surface energy with that of mercury and other polymers is given. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1155–1166, 2000 相似文献
5.
The blend system containing a poly(vinylidene fluoride/trifluoroethylene) [P(VDF/TrFE)] copolymer (68/32 mol %) and poly(vinyl acetate) (PVAc) was miscible from the results of differential scanning calorimetry (DSC) studies that exhibit the presence of a single, composition‐dependent glass transition temperature (Tg) and a strong melting point depression for the semicrystalline P(VDF/TrFE) component. However, differences between the DSC and dielectric measurements, which showed a separate P(VDF/TrFE) Tg peak, suggests that the P(VDF/TrFE)/PVAc blends are actually partially miscible. Because of the lower dielectric constant of PVAc and the reduced sample crystallinity caused by the addition of PVAc, both the dielectric constant and the remanent polarization of the copolymer blends decrease with increasing PVAc content. The presence of a small amount of PVAc stabilized the anomalous ferroelectric behavior of ice–water‐quenched P(VDF/TrFE), and the blend portrayed normal polarization reversal behavior after adding only 1 wt % PVAc. The piezoelectric response suggests small changes with an increasing number of poling cycles. It is believed that PVAc affects the D‐E hysteresis behavior at the interface between crystalline and amorphous phases, although much work remains to be done to confirm this hypothesis. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 927–935, 2003 相似文献
6.
Mengxian Shang Hideto Matsuyama Taisuke Maki Masaaki Teramoto Douglas R. Lioyd 《Journal of Polymer Science.Polymer Physics》2003,41(2):194-201
Liquid–liquid thermally induced phase separation of the polymer‐diluent system of poly(ethylene‐co‐vinyl alcohol) (EVOH)‐glycerol was examined under light scattering. For EVOH with an ethylene content of 38 mol % (EVOH38), maxima of the scattered light intensity were observed that indicated that phase separation occurred by the spinodal decomposition (SD). The growth of the structures formed by the general liquid–liquid phase separation obeyed a power‐law scaling relationship in SD. For EVOH with an ethylene content of 32 mol % (EVOH32), the liquid–liquid phase separation resulted from the polymer crystallization. In this case, the structure growth showed the characteristic behavior in which the crystalline particles were initially formed, and then the droplets formed by the liquid–liquid phase separation induced by the crystallization grew rapidly. Furthermore, the growth of the droplet by the phase separation was followed by an optical microscope measurement at a constant cooling rate. The phase‐separated structure formed after the crystallization can grow faster than that formed by the normal liquid–liquid phase separation. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 194–201, 2003 相似文献
7.
The development of the morphology in poly(vinylidene fluoride)/poly(3‐hydroxybutyrate) (PVDF/PHB) blends upon isothermal and anisothermal crystallization is investigated by time‐resolved small‐ and wide‐angle X‐ray scattering. The components are completely miscible in the melt but crystallize separately; they crystallize stepwise at different temperatures or sequentially with isothermal or anisothermal conditions, respectively. The PVDF crystallizes undisturbed whereas PHB crystallizes in a confined space that is determined by the existing supermolecular structure of the PVDF. The investigations reveal that composition inhomogeneities may initially develop in the remaining melt or in the amorphous phases of the PVDF upon crystallization of that component. The subsequent crystallization of the PHB depends on these heterogeneities and the supermolecular structure of PVDF (dendritically or globularly spherulitic). PHB may form separate spherulites that start to grow from the melt, or it may develop “interlocking spherulites” that start to grow from inside a PVDF spherulite. Occasionally, a large number of PVDF spherulites may be incorporated into PHB interlocking spherulites. The separate PHB spherulites may intrude into the PVDF spherulites upon further growth, which results in “interpenetrating spherulites.” Interlocking and interpenetrating are realized by the growth of separate lamellar stacks (“fibrils”) of the blend components. There is no interlamellar growth. The growth direction of the PHB fibrils follows that of the existing PVDF fibrils. Depending on the distribution of the PHB molecules on the interlamellar and interfibrillar PVDF regions, the lamellar arrangement of the PVDF may contract or expand upon PHB crystallization and the adjacent fibrils of the two components are linked or clearly separated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 974–985, 2004 相似文献
8.
聚偏氟乙烯取向薄膜的结晶形态 总被引:2,自引:0,他引:2
本文用小角激光散射法研究了聚偏氟乙烯薄膜在拉伸取向过程中晶体形态及结构的变化。拉伸使球晶形变为椭球,同时伴随着局部熔融与重结晶过程,散射图案由原来的四叶瓣发展为八叶瓣。红外测量及X-射线衍射分析表明,拉伸引起分子链构象改变,使晶型发生了转变。 相似文献
9.
Poly(vinylidene fluoride) (PVDF) membranes were hydrophilic modified with hydroxyl group terminated hyperbranched poly(amine‐ester) (HPAE). Fourier transform infrared spectroscopy (FT‐IR) was used to study the chemical change of PVDF membranes. X‐ray photoelectron spectroscopy (XPS) indicated that some HPAE molecules were retained in PVDF membrane through polymer chain coiling. The presence of HPAE would improve the hydrophilicity of PVDF membrane. Scanning electron microscopy (SEM) was employed to characterize the morphology of different membranes. The thermodynamic stability for PVDF/DMAc/HPAE/Water system was characterized by the determination of the gelation values. Precipitation kinetics for PVDF/DMAc/HPAE/Water system was studied by precipitation time measurement. The water contact angle indicated that the hydrophilicity and the biocompatibility corresponding to protein adsorption of PVDF membrane were improved significantly after blending with hydrophilic HPAE molecules. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
10.
Dar‐Jong Lin Cheng‐Liang Chang Chi‐Lin Chang Tzung‐Chin Chen Liao‐Ping Cheng 《Journal of Polymer Science.Polymer Physics》2004,42(5):830-842
Poly(vinylidene fluoride) (PVDF) membranes were prepared by the isothermal immersion and precipitation of PVDF/N‐methyl‐2‐pyrollidone dope solutions in either harsh or soft nonsolvent baths. Low‐voltage field emission scanning electron microscopy imaging of the formed membranes at high magnifications (e.g., 300,000×) revealed their nanoscale fine structures, particularly dendrites observed on the surfaces of the macrovoids, cellular pores, and the membrane skin, which have never been successfully presented in the literature. Evidence of crystallization was also demonstrated by X‐ray diffraction and differential scanning calorimetry measurements. The phase diagram at 25 °C, including a binodal, tie lines, and a crystallization‐induced gelation line, was determined both experimentally and theoretically. These results were further used in mass‐transfer calculations to obtain diffusion trajectories and concentration profiles for the membrane region, which were useful for elucidating the relationship between the membrane preparation conditions and the obtained membrane morphologies. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 830–842, 2004 相似文献
11.
The development of the poly(3‐hydroxybutyrate) (PHB) morphology in the presence of already existent poly(vinylidene fluoride) (PVDF) spherulites was studied by two‐stage solidification with two separate crystallization temperatures. PVDF formed irregular dendrites at lower temperatures and regular, banded spherulites at elevated temperatures. The transition temperature of the spherulitic morphology from dendrites to regular, banded spherulites increased with increasing PVDF content. A remarkable amount of PHB was included in the PVDF dendrites, whereas PHB was rejected into the remaining melt from the banded spherulites. When PVDF crystallized as banded spherulites, PHB could consequently crystallize only around them, if at all. In contrast, PHB crystallized with a common growth front, starting from a defined site in the interfibrillar regions of volume‐filling PVDF dendrites. It formed by itself dendritic spherulites that included a large number of PVDF spherulites. For blends with a PHB content of more than 80 wt %, for which the PVDF dendrites were not volume‐filling, PHB first formed regular spherulites. Their growth started from outside the PVDF dendrites but could later interpenetrate them, and this made their own morphology dendritic. These PHB spherulites melted stepwise because the lamellae inside the PVDF dendrites melted at a lower temperature than those from outside. This reflected the regularity of the two fractions of the lamellae because that of those inside the dendrites of PVDF was controlled by the intraspherulitic order of PVDF, whereas that from outside was only controlled by the temperature and the melt composition. The described morphologies developed without mutual nucleating efficiency of the components. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 873–882, 2003 相似文献
12.
The comparative studies on the miscibility and phase behavior between the blends of linear and star‐shaped poly(2‐methyl‐2‐oxazoline) with poly(vinylidene fluoride) (PVDF) were carried out in this work. The linear poly(2‐methyl‐2‐oxazoline) was synthesized by the ring opening polymerization of 2‐methyl‐2‐oxazoline in the presence of methyl p‐toluenesulfonate (MeOTs) whereas the star‐shaped poly(2‐methyl‐2‐oxazoline) was synthesized with octa(3‐iodopropyl) polyhedral oligomeric silsesquioxane [(IC3H6)8Si8O12, OipPOSS] as an octafunctional initiator. The polymers with different topological structures were characterized by means of Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy. It is found that the star‐shaped poly(2‐methyl‐2‐oxazoline) was miscible with poly(vinylidene fluoride) (PVDF), which was evidenced by single glass‐transition temperature behavior and the equilibrium melting‐point depression. Nonetheless, the blends of linear poly(2‐methyl‐2‐oxazoline) with PVDF were phase‐separated. The difference in miscibility was ascribed to the topological effect of PMOx macromolecules on the miscibility. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 942–952, 2006 相似文献
13.
Katsuhiro Inomata Chieko Fukuda Kuniyoshi Hori Hideki Sugimoto Eiji Nakanishi 《Journal of Polymer Science.Polymer Physics》2007,45(2):129-137
The phase behavior and crystallization of graft copolymers consisting of poly(n‐hexyl methacrylate) (PHMA) as an amorphous main chain and poly(ethylene glycol) (PEG) as crystallizable side chains (HMAx with 15 ≤ x ≤ 73, where x represents the weight percentage of PEG) were investigated. Small‐angle X‐ray scattering profiles measured above the melting temperature of PEG suggested that a microdomain structure with segregated PHMA and PEG domains was formed in HMA40 and HMA46. This phase behavior was qualitatively described by a calculated phase diagram based on the mean‐field theory. Because of the segregation of PEG into microdomains, the crystallization temperature of the PEG side chains in HMAx was higher than that in poly(methyl acrylate)‐graft‐poly(ethylene glycol) having a similar value of x, which was considered to be in a disordered state above the melting temperature. In HMAx with x ≤ 40, PEG crystallization was strongly restricted, probably because the PEG microdomains were isolated in the PHMA matrix. As a result, the growth of PEG spherulite was not observed because the PEG crystallization occurred after vitrification of the PHMA segregated domains. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 129–137, 2007 相似文献
14.
15.
To enhance the heat resistance of poly(styrene‐co‐acrylonitrile‐co‐butadiene), ABS, miscibility of poly(styrene‐co‐acrylonitrile), SAN, with poly(styrene‐co‐n‐phenyl maleimide), SNPMI, having a higher glass transition temperature than SAN was explored. SAN/SNPMI blends casted from solvent were immiscible regardless of copolymer compositions. However, SNPMI copolymer forms homogeneous mixtures with SAN copolymer within specific ranges of copolymer composition upon heating caused by upper critical solution temperature, UCST, type phase behavior. Since immiscibility of solvent casting samples can be driven by solvent effects even though SAN/SNPMI blends are miscible, UCST‐type phase behavior was confirmed by exploring phase reversibility. When copolymer composition of SNPMI was fixed, the phase homogenization temperature of SAN/SNPMI blends was increased as AN content in SAN copolymer increased. To understand the observed phase behavior of SAN/SNPMI blend, interaction energies of blends were calculated from the UCST‐type phase boundaries by using the lattice‐fluid theory combined with a binary interaction model. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1131–1139, 2008 相似文献
16.
Thermoreversible gelation behavior of blend of poly(vinylidene fluoride) and poly(vinylidene fluoride-trifluoroethylene) in γ-butyrolactone solution was studied. Sol-gel transition temperature increased with the increase of polymer concentration, but was independent of the blend ratio of two polymers. An equation for gelation rate was derived, assuming that the gelation is a first-order reaction and that the gelation rate obeys an Arrhenius type. According to the equation, the growth index of gelation and supercooling temperature had a dominant effect on gelation rate. The growth index of gelation, which was calculated from the dependence of activation energy on the supercooling temperature in the isothermal gelation, varied with the blend ratio of two polymers. Growth index of gelation larger than 2 was obtained for the blend gels studied in this experiment. It may suggest that the multidimensional growth of gels occurs in such polymer blend solutions. X-ray diffraction and differential scanning calorimetry measurements showed existence of separate crystals due to each component of polymer in the blend gels. © 1996 John Wiley & Sons, Inc. 相似文献
17.
Kurt Van Durme Bruno Van Mele Katrien V. Bernaerts Beatrice Verdonck Filip E. Du Prez 《Journal of Polymer Science.Polymer Physics》2006,44(2):461-469
A range of hydrophilic poly(methyl vinyl ether) (PMVE) polymers was synthesized by living cationic polymerization of methyl vinyl ether (MVE), having different hydrophilic or hydrophobic chain‐end functionalities. The dissimilar end‐groups were either introduced by end‐capping of the growing polymer chain with LiBH4, methanol, and water or by functional initiation with 2‐bromo‐(3,3‐diethoxy‐propyl)‐2‐methylpropanoate. The synthesized PMVEs were characterized by 1H NMR, size exclusion chromatography, and matrix‐assisted laser desorption ionization time of flight, displaying a narrow polydispersity. Modulated temperature DSC was applied to study the influence of the nature of the end‐groups on the solubility behavior of PMVE in water. Terminal‐modification with a hydroxyl function improves the solubility, whereas a Br‐containing end‐group causes the polymer to be insoluble in water at room temperature; however, the special type III lower critical solution temperature demixing behavior being maintained. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 461–469, 2006 相似文献
18.
Dar‐Jong Lin Konstantinos Beltsios Cheng‐Liang Chang Liao‐Ping Cheng 《Journal of Polymer Science.Polymer Physics》2003,41(13):1578-1588
The structure and formation mechanism of a microporous phase‐inversion poly(vinylidene fluoride) (PVDF) membrane exhibiting a relatively loosely packed agglomerate of semicrystalline globules are explored. The membrane has been prepared by the coagulation of a solution of PVDF in dimethylformamide by the action of 1‐octanol, which is a soft nonsolvent. Experimental observations pertain to the globule surface, which is dominated by a grainy nanostructure; the globular interior, which exhibits a range of fine structures (e.g., twisted sheets and treelike branches); and the globule–globule connections, which exhibit a sheetlike or ropelike structure. On the basis of the observed structural details and phase diagram considerations, it is proposed that the membrane structure is the result of a unique combination of a polymer crystallization and a liquid–liquid phase‐separation process, with end‐result globular structural features of remarkable uniformity. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1578–1588, 2003 相似文献
19.
Hao‐Cheng Yang Qing‐Yun Wu Hong‐Qin Liang Ling‐Shu Wan Zhi‐Kang Xu 《Journal of Polymer Science.Polymer Physics》2013,51(19):1438-1447
Thermally induced phase separation (TIPS) has been developed to prepare porous membranes. The porous structures are mainly dependent on diluents adopted in the TIPS process. We obtained two typical morphologies of poly(vinylidene fluoride) (PVDF) membranes using cyclohexanone (CO) and propylene carbonate (PC) as diluents, respectively. SEM observation displays that porous spherulites are formed from PVDF/CO system, whereas smooth particles result from PVDF/PC system. The TIPS processes of these two systems have been investigated in detail by optical microscope observation and temperature‐dependent FTIR combined with two‐dimensional infrared correlation analysis. Rapid crystallization of PVDF can be seen around 110 °C in the PVDF/CO system, which is consistent with the results of temperature‐dependent FTIR spectra. The spectral evolution indicates a transform of PVDF from amorphous to α‐phase after 110 °C. The νs(C?O) band at 1712 cm?1 narrows and the νs(C? F) band at 1188 cm?1 shifts to 1192 cm?1 before crystallization, which implies the destruction of interaction between PVDF and CO. In contrast, the PVDF/PC system shows slow crystallization with all‐trans conformation assigned to β‐phase and γ‐phase below 60 °C but no obvious change of polymer?diluent interaction. We propose two mechanisms for the different phase behaviors of PVDF/CO and PVDF/PC systems: a solid?liquid phase separation after destruction of polymer?diluent interaction in the former, and a liquid?liquid phase separation process coupled with rich‐phase crystallization in the later. This work may provide new insight into the relationship among morphologies, crystal forms, and phase separation processes, which will be helpful to adjust membrane structure. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 1438–1447 相似文献