首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Constructing single‐molecule parallel circuits with multiple conduction channels is an effective strategy to improve the conductance of a single molecular junction, but rarely reported. We present a novel through‐space conjugated single‐molecule parallel circuit (f‐4Ph‐4SMe) comprised of a pair of closely parallelly aligned p‐quaterphenyl chains tethered by a vinyl bridge and end‐capped with four SMe anchoring groups. Scanning‐tunneling‐microscopy‐based break junction (STM‐BJ) and transmission calculations demonstrate that f‐4Ph‐4SMe holds multiple conductance states owing to different contact configurations. When four SMe groups are in contact with two electrodes at the same time, the through‐bond and through‐space conduction channels work synergistically, resulting in a conductance much larger than those of analogous molecules with two SMe groups or the sum of two p‐quaterphenyl chains. The system is an ideal model for understanding electron transport through parallel π‐stacked molecular systems and may serve as a key component for integrated molecular circuits with controllable conductance.  相似文献   

2.
3.
Understanding electron transport through a single molecule bridging between metal electrodes is a central issue in the field of molecular electronics. This review covers the fabrication and electron‐transport properties of single π‐conjugated molecule junctions, which include benzene, fullerene, and π‐stacked molecules. The metal/molecule interface plays a decisive role in determining the stability and conductivity of single‐molecule junctions. The effect of the metal–molecule contact on the conductance of the single π‐conjugated molecule junction is reviewed. The characterization of the single benzene molecule junction is also discussed using inelastic electron tunneling spectroscopy and shot noise. Finally, electron transport through the π‐stacked system using π‐stacked aromatic molecules enclosed within self‐assembled coordination cages is reviewed. The electron transport in the π‐stacked systems is found to be efficient at the single‐molecule level, thus providing insight into the design of conductive materials.  相似文献   

4.
5.
Molecular wires are covalently bonded to gold electrodes—to form metal–molecule–metal junctions—by functionalizing each end with a ? SH group. The conductance of a wide variety of molecular junctions is studied theoretically by using first‐principles density functional theory (DFT) combined with the nonequilibrium Green′s function (NEGF) formalism. Based on the chain‐length‐dependent conductance of the series of molecular wires, the attenuation factor β is obtained and compared with the experimental data. The β value is quantitatively correlated to the molecular HOMO–LUMO gap. Coupling between the metallic electrode and the molecular bridge plays an important role in electron transport. A contact resistance of 6.0±2.0 KΩ is obtained by extrapolating the molecular‐bridge length to zero. This value is of the same magnitude as the quantum resistance.  相似文献   

6.
Extended pi-conjugated molecules are interesting materials that have been studied theoretically and experimentally with applications to conducting nanowire, memory, and diode in mind. Chemical understanding of electron transport properties in molecular junctions, in which two electrodes have weak contact with a pi-conjugated molecule, is presented in terms of the orbital concept. The phase and amplitude of the HOMO and LUMO of pi-conjugated molecules determine essential properties of the electron transport in them. The derived rule allows us to predict single molecules' essential transport properties, which significantly depend on the type of connection between a molecule and electrodes. Qualitative predictions based on frontier orbital analysis about the site-dependent electron transport in naphthalene, phenanthrene, and anthracene are compared with density functional theory calculations for the molecular junctions of their dithiolate derivatives, in which two gold electrodes have strong contact with a molecule through two Au-S bonds.  相似文献   

7.
We studied electron transport properties of a dithiol‐benzene molecule covalently bonded between two gold electrodes by combining ab initio calculations for the central molecule and a green function method to calculate electron transport. Due to the large computational demand, this type of calculations usually involves certain ways of simplification. The simplification commonly used is to fix the contact surface of the electrodes by ignoring the disturbance of the Au contact surface by contacting with the central molecule, i.e. without scattering region relaxation. In this study, we intended to resolve the difference between models with and without the above simplification. The large conductance found in our models without scattering region relaxation is due to the highly symmetric arrangement of the Au contact surface and those layers near the contact. The disturbance of the Au contact surface by the contact of the central molecule is important since the increase of the Au‐S bond and the distortion of the Au atom on the FCC site can lower the transmission coefficient between the two electrodes. In order to obtain better results, the model should include scattering region relaxation. However, when such relaxation is not applicable or demands too much calculation resource, the center molecule of the electronic transport junction should be at least optimized by the calculation level including electronic correlation, i.e. post‐HF methods.  相似文献   

8.
《Chemphyschem》2003,4(3):260-267
Substantial fluctuations of the fluorescence intensity have been detected for single clusters of poly(phenylenevinylene) containing more than 75 polymer chains or 30 000 monomer units. To the best of our knowledge, this is the first time such fluctuations (which resemble the “blinking” effect in single‐molecule fluorescence) have been reported for such a large molecular ensemble containing several macromolecules. Together with the distinct jumps, smooth fluctuations of the fluorescence intensity, with characteristic times from milliseconds to seconds, were observed. This fact distinguishes the fluorescence behaviour of the polymer clusters from that of other multichromophoric systems such as the single chains of conjugated polymers reported in the literature. The consecutive or simultaneous switching of one or several emitting sites from the “on” to “off” state does not explain the character of the fluctuations observed. We suggest that the quenching of the light‐emitting exciton by a long‐lived species, such as, for example, polarons, plays an important role in these unusual fluctuations. Electric field induced fluorescence quenching differs significantly for different clusters. It is proposed that this fluorescence was mainly quenched by polarons injected from the electrodes in the presence of an electric field. The specific behaviour of each cluster is explained by suggesting a different position of the clusters with respect to the electrodes.  相似文献   

9.
Many recent experimental and theoretical studies have paid attention to the conductivity of single molecule transport junctions, both because it is fundamentally important and because of its significance in the development of molecular-based electronics. In this paper, we discuss a nonequilibrium Green's function (NEGF)-based Hartree-Fock (HF) approach; the NEGF method can appropriately accommodate charge distributions in molecules connected to electrodes. In addition, we show that a NEGF-based density matrix can reduce to an ordinary HF density matrix for an isolated molecule if the molecule does not interact with electrodes. This feature of the NEGF-based density matrix also means that NEGF-based Mulliken charges can be reduced to ordinary Mulliken charges in those cases. Therefore, the NEGF-based HF approach can directly compare molecules that are connected to electrodes with isolated ones, and is useful in investigating complicated features of molecular conduction. We also calculated the transmission probability and conduction for benzenedithiol under finite electrode biases. The coupling between the electrodes and molecule causes electron transfer from the molecule to the electrodes, and the applied bias modifies this electron transfer. In addition, we found that the molecule responds capacitively to the applied bias, by shifting the molecular orbital energies.  相似文献   

10.
Together with the more intuitive and commonly recognized conductance mechanisms of charge‐hopping and tunneling, quantum‐interference (QI) phenomena have been identified as important factors affecting charge transport through molecules. Consequently, establishing simple and flexible molecular‐design strategies to understand, control, and exploit QI in molecular junctions poses an exciting challenge. Here we demonstrate that destructive quantum interference (DQI) in meta‐substituted phenylene ethylene‐type oligomers (m‐OPE) can be tuned by changing the position and conformation of methoxy (OMe) substituents at the central phenylene ring. These substituents play the role of molecular‐scale taps, which can be switched on or off to control the current flow through a molecule. Our experimental results conclusively verify recently postulated magic‐ratio and orbital‐product rules, and highlight a novel chemical design strategy for tuning and gating DQI features to create single‐molecule devices with desirable electronic functions.  相似文献   

11.
We report a first-principles study of electrical transport and negative differential resistance (NDR) in a single molecular conductor consisting of a borazine ring sandwiched between two Au(100) electrodes with a finite cross section. The projected density of states (PDOS) and transmission coefficients under various external voltage biases are analyzed, and it suggests that the variation of the coupling between the molecule and the electrodes with external bias leads to NDR. Therefore, we propose that one origin of NDR in molecular devices is caused by the characteristics of both the molecule and the electrodes as well as their cooperation, not necessarily only by the inherent properties of certain species of molecules themselves. The changes of charge state of the molecule have minor effects on NDR in this device because the Mulliken population analysis shows that electron occupation variation on the molecule is very small when different external biases are applied.  相似文献   

12.
We present a model molecular system with an unintuitive transport-extension behavior in which the tunneling current increases with forced molecular elongation. The molecule consists of two complementary aromatic units (1,4-anthracenedione and 1,4-anthracenediol) hinged via two ether chains and attached to gold electrodes through thiol-terminated alkenes. The transport properties of the molecule as it is mechanically elongated in a single-molecule pulling setting are computationally investigated using a combination of equilibrium molecular dynamics simulations of the pulling with gDFTB computations of the transport properties in the Landauer limit. Contrary to the usual exponential decay of tunneling currents with increasing molecular length, the simulations indicate that upon elongation electronic transport along the molecule increases 10-fold. The structural origin of this inverted trend in the transport is elucidated via a local current analysis that reveals the dual role played by H-bonds in both stabilizing π-stacking for selected extensions and introducing additional electronic couplings between the complementary aromatic rings that also enhance tunneling currents across the molecule. The simulations illustrate an inverted electromechanical single-molecule switch that is based on a novel class of transport-extension behavior that can be achieved via mechanical manipulation and highlight the remarkable sensitivity of conductance measurements to the molecular conformation.  相似文献   

13.
We have demonstrated a single molecule field effect transistor (FET) which consists of a redox molecule (perylene tetracarboxylic diimide) covalently bonded to a source and drain electrode and an electrochemical gate. By adjusting the gate voltage, the energy levels of empty molecular states are shifted to the Fermi level of the source and drain electrodes. This results in a nearly 3 orders of magnitude increase in the source-drain current, in the fashion of an n-type FET. The large current increase is attributed to an electron transport mediated by the lowest empty molecular energy level when it lines up with the Fermi level.  相似文献   

14.
For the realization of molecular electronics, one essential goal is the ability to systematically fabricate molecular functional components in a well-controlled manner. Experimental techniques have been developed such that π-stacked ethylbenzene molecules can now be routinely induced to self-assemble on an H-terminated Si(100) surface at precise locations and along precise directions. Electron transport calculations predict that such molecular wires could indeed carry an electrical current, but the Si substrate may play a considerable role as a competing pathway for conducting electrons. In this work, we investigate the effect of placing substituent groups of varying electron donating or withdrawing strengths on the ethylbenzene molecules to determine how they would affect the transport properties of such molecular wires. The systems consist of a line of π-stacked ethylbenzene molecules covalently bonded to a Si substrate. The ethylbenzene line is bridging two Al electrodes to model current through the molecular stack. For our transport calculations, we employ a first-principles technique where density functional theory (DFT) is used within the non-equilibrium Green’s function formalism (NEGF). The calculated density of states suggest that substituent groups are an effective way to shift molecular states relative to the electronic states associated with the Si substrate. The electron transmission spectra obtained from the NEGF–DFT calculations reveal that the transport properties could also be extensively modulated by changing substituent groups. For certain molecules, it is possible to have a transmission peak at the Fermi level of the electrodes, corresponding to high conduction through the molecular wire with essentially no leakage into the Si substrate.  相似文献   

15.
The transport properties of a simple model for a finite level structure (a molecule or a dot) connected to metal electrodes in an alternating current scanning tunneling microscope (ac-STM) configuration is studied. The finite level structure is assumed to have strong binding properties with the metallic substrate, and the bias between the STM tip and the hybrid metal-molecule interface has both an ac and a dc component. The finite frequency current response and the zero-frequency photoassisted shot noise are computed using the Keldysh technique, and examples for a single-site molecule (a quantum dot) and for a two-site molecule are examined. The model may be useful for the interpretation of recent experiments using an ac-STM for the study of both conducting and insulating surfaces, where the third harmonic component of the current is measured. The zero-frequency photoassisted shot noise serves as a useful diagnosis for analyzing the energy level structure of the molecule. The present work motivates the need for further analysis of current fluctuations in electronic molecular transport.  相似文献   

16.
In molecular transport junctions, current is monitored as a function of the applied voltage for a single molecule assembled between two leads. The transport is modulated by the electronic states of the molecule. For the prototypical delocalized systems, namely, πconjugated aromatics, the π system usually dominates the transport. Herein, we investigate situations where model calculations including only the π system do not capture all of the subtleties of the transport properties. Including both the σ and π contributions to charge transport allows us to demonstrate that while there is generally good agreement, there are discrepancies between the methods. We find that model calculations with only the π system are insufficient where the transport is dominated by quantum interference and cases where geometric changes modulate the coupling between different regions of the π system. We examine two specific molecular test cases to model these geometric changes: the angle dependence of coupling in (firstly) a biphenyl and (secondly) a nitro substituent of a cross‐conjugated unit.  相似文献   

17.
One of the central issues of molecular electronics (ME) is the study of the molecule–metal electrode contacts, and their implications for the conductivity, charge‐transport mechanism, and mechanical stability. In fact, stochastic on/off switching (blinking) reported in STM experiments is a major problem of single‐molecule devices, and challenges the stability and reliability of these systems. Surprisingly, the ambiguous STM results all originate from devices that bind to the metallic electrode through a one‐atom connection. In the present work, DFT is employed to study and compare the properties of a set of simple acenes that bind to metallic electrodes with an increasing number of connections, in order to determine whether the increasing numbers of anchoring groups have a direct repercussion on the stability of these systems. The conductivities of the three polycyclic aromatic hydrocarbons are calculated, as well as their transmission spectra and current profiles. The thermal and mechanical stability of these systems is studied by pulling and pushing the metal–molecule connection. The results show that molecules with more than one connection per electrode exhibit greater electrical efficiency and current stability.  相似文献   

18.
A combined experimental and theoretical study on molecular junctions with asymmetry in both the electrode type and in the anchoring group type is presented. A scanning tunnelling microscope is used to create the “asymmetric” Au-S-(CH2)n-COOH-graphene molecular junctions and determine their conductance. The measurements are combined with electron transport calculations based on density functional theory (DFT) to analyze the electrical conductance and its length attenuation factor from a series of junctions of different molecular length (n). These results show an unexpected trend with a rather high conductance and a smaller attenuation factor for the Au-S-(CH2)n-COOH-graphene configuration compared to the equivalent junction with the “symmetrical” COOH contacting using the HOOC-(CH2)n-COOH series. Owing to the effect of the graphene electrode, the attenuation factor is also smaller than the one obtained for Au/Au electrodes. These results are interpreted through the relative molecule/electrode couplings and molecular level alignments as determined with DFT calculations. In an asymmetric junction, the electrical current flows through the less resistive conductance channel, similarly to what is observed in the macroscopic regime.  相似文献   

19.
The fundamental principle of molecular electronics is to comprehend electrical properties of single molecules connected between two probe electrodes. In recent years, substantial advances in this field have been made to underpin experimental and theoretical understanding of single molecule electrochemistry. By using scanning tunneling microscope (STM) break-junction technique, the switching events of electrical current from single molecule bridge tuning by electrochemical gating are investigated to uncover the relationship between electrochemical electron transfer and charge transport processes in chemical and biological molecule junctions. In this short review, we outline the latest works of single molecule electrochemistry studied with STM break-junction technique from Nongjian Tao's group, and share the insights on the opportunities and challenges for future research.  相似文献   

20.
We use density functional theory based nonequilibrium Green's function to self-consistently study the current through the 1,4-benzenedithiol (BDT). The elastic and inelastic tunneling properties through this Au-BDT-Au molecular junction are simulated, respectively. For the elastic tunneling case, it is found that the current through the tilted molecule can be modulated effectively by the external gate field, which is perpendicular to the phenyl ring. The gate voltage amplification comes from the modulation of the interaction between the electrodes and the molecules in the junctions. For the inelastic case, the electron tunneling scattered by the molecular vibrational modes is considered within the self-consistent Born approximation scheme, and the inelastic electron tunneling spectrum is calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号