首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Benzoxazine monomer (Ba) was blended with soluble poly(imide‐siloxane)s in various weight ratios. The soluble poly(imide‐siloxane)s with and without pendent phenolic groups were prepared from the reaction of 2,2′‐bis(3,4‐dicarboxylphenyl)hexafluoropropane dianhydride with α,ω‐bis(aminopropyl)dimethylsiloxane oligomer (PDMS; molecular weight = 5000) and 3,3′‐dihydroxybenzidine (with OH group) or 4,4′‐diaminodiphenyl ether (without OH group). The onset and maximum of the exotherm due to the ring‐opening polymerization for the pristine Ba appeared on differential scanning calorimetry curves around 200 and 240 °C, respectively. In the presence of poly(imide‐siloxane)s, the exothermic temperatures were lowered: the onset to 130–140 °C and the maximum to 210–220 °C. The exotherm due to the benzoxazine polymerization disappeared after curing at 240 °C for 1 h. Viscoelastic measurements of the cured blends containing poly(imide‐siloxane) with OH functionality showed two glass‐transition temperatures (Tg's), at a low temperature around ?55 °C and at a high temperature around 250–300 °C, displaying phase separation between PDMS and the combined phase consisting of polyimide and polybenzoxazine (PBa) components due to the formation of AB‐crosslinked polymer. For the blends containing poly(imide‐siloxane) without OH functionalities, however, in addition to the Tg due to PDMS, two Tg's were observed in high‐temperature ranges, 230–260 and 300–350 °C, indicating further phase separation between the polyimide and PBa components due to the formation of semi‐interpenetrating networks. In both cases, Tg increased with increasing poly(imide‐siloxane) content. Tensile measurements showed that the toughness of PBa was enhanced by the addition of poly(imide‐siloxane). Thermogravimetric analysis showed that the thermal stability of PBa also was enhanced by the addition of poly(imide‐siloxane). © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2633–2641, 2001  相似文献   

2.
A new diamine monomer, 4,4″‐bis(aminophenoxy)‐3,3″‐trifluoromethyl terphenyl (ATFT) was synthesized that led to a number of novel fluorinated polyimides by solution as well as thermal imidization routes when reacted with different commercially available dianhydrides like pyromellatic dianhydride (PMDA), benzophenone tetracarboxylic acid dianhydride (BTDA), or 2,2‐bis(3,4‐dicarboxyphenyl) hexafluoropropane (6FDA). The polyimides ATFT/BTDA and ATFT/6FDA derived from both routes were soluble in several organic solvents such as N,N‐dimethylformamide, N,N‐dimethylacetamide, and dimethyl sulfoxide. The polyimide ATFT/PMDA was only soluble in N‐methylpyrollidone. The polyimide films had low water absorption of 0.3–0.7%, low dielectric constants of 2.72–3.3 at 1 Hz, refractive indices of 1.594–1.647 at 589.3 nm, and optical transparency >85%. These polyimides showed very high thermal stability with decomposition temperatures (5% weight loss) up to 532 °C in air and good isothermal stability; only 7% weight loss occurred at 400 °C after 7 h, and less than 0.6% weight loss was observed at 315 °C for 5 h. Transparent thin films of these polyimides exhibited tensile strengths up to 112 MPa, a modulus of elasticity up to 3.05 GPa, and elongation at break up to 21% depending on the repeating unit structure. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1016–1027, 2002  相似文献   

3.
A series of new poly(imide‐hydrazide)s and poly(amide‐imide‐hydrazide)s were obtained by the direct polycondensation of N‐[p‐(or m‐)carboxyphenyl]trimellitimide (p‐ or m‐CPTMI) with terephthalic dihydrazide (TPH), isophthalic dihydrazide (IPH), and p‐aminobenzhydrazide (p‐ABH) by means of diphenyl phosphite and pyridine in the N‐methyl‐2‐pyrrolidone (NMP) solutions containing dissolved CaCl2. The resulting hydrazide‐containing polymers exhibited inherent viscosities in the 0.15–0.96 dL/g range. Except for that derived from p‐CPTMI with TPH or p‐ABH, the other hydrazide copolymers were readily soluble in polar solvents such as NMP and dimethyl sulfoxide (DMSO). As evidenced by X‐ray diffraction patterns, the hydrazide copolymer obtained from TPH showed a moderate level of crystallinity, whereas the others were amorphous in nature. Most of the amorphous hydrazide copolymers formed flexible and tough films by solvent casting. The amorphous hydrazide copolymers had glass‐transition temperatures (Tg) between 187 and 233 °C. All hydrazide copolymers could be thermally converted into the corresponding oxadiazole copolymers approximately in the region of 250–400 °C, as evidenced by the DSC thermograms. The oxadiazole copolymers showed a significantly decreased solubility when compared to their respective hydrazide precursors. They exhibited Tg's of 264–302 °C and did not show dramatic weight loss before 400 °C in air or nitrogen. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1599–1608, 2000  相似文献   

4.
5.
Five new block copoly(imide siloxane)s have been prepared by reacting two different diamines, 4,4″-bis(p-aminophenoxy)-3,3″-trifluoromethyl terphenyl (APTTFT) and amino-propyl terminated polydimethylsiloxane (APPS), separately with 4,4′-(4,4′-isopropylidenediphenoxy)bis(phthalic anhydride); BPADA. The reactions were conducted by a two pot solution imidization technique. The diamine APTTFT and the dianhydride BPADA composed the hard block segment while APPS and BPADA composed the soft block segment. The soft and hard blocks of different block lengths were generated by different stoichiometric imbalance in two different flasks and the final polymers were obtained by reacting both the blocks together. Different block copoly(imide siloxane)s were prepared on increasing the hard block lengths (DP) from 7 to 12, 18, 23 and 28 and the soft block lengths (DP) from 4 to 6, 8, 10 and 12, respectively. The resulting polymers have been well characterized by NMR, DSC and DMA techniques. The properties of the block copolymers were compared with the analogous random copolymers and homopolyimide prepared without APPS.  相似文献   

6.
Several new random and block copoly(imide siloxane)s have been prepared by the solution polycondensation of commercially available 4,4′-oxydianiline (ODA) and amino-propyl terminated polydimethylsiloxane (APPS) with 4,4′-(hexafluoro-isopropylidene)diphthalic anhydride (6FDA). The siloxane loading was kept to 10, 20, 30, 40 and 50 wt% in the copolymers. The random copolymers were prepared by a one pot solution imidization technique, and two pot solution imidization technique was adopted for the synthesis of the block copolymers. The diamine ODA and the dianhydride 6FDA composed the hard block segment, while APPS and 6FDA composed the soft block segment. The hard block length was kept constant while the soft block lengths were varied by varying the siloxane loading. Accordingly, block copoly(imide siloxane)s were prepared on increasing the soft block lengths (DP) from 3 to 6, 10, 18 and 36 for fixed hard block length of 22. The resulting polymers have been well characterized by IR, NMR and GPC techniques. Thermal and mechanical properties of the random and block copolymers were compared with the already reported homopolyimide without siloxane moiety.  相似文献   

7.
Poly(glycolic acid) (PGA) and a series of novel random copolymers of PGA containing 2‐hydroxyisobutyrric acid (PGAPHIB) (HIB unit content from 1.5 to 7.4 mol %) were synthesized and characterized in terms of chemical structure and molecular weight. Afterward, the polyesters were examined by thermogravimetric analysis, differential scanning calorimetry, and X‐ray diffraction techniques. The copolymers, which displayed a better thermal stability than PGA, at room temperature appeared as semicrystalline materials: the main effect of copolymerization was a lowering in the amount of crystallinity and a decrease of the melting temperature with respect to homopolymer PGA. Baur's equation described well the Tm‐composition data. X‐ray diffraction measurements allowed the identification of the PGA crystalline structure in all cases. After melt quenching, semicrystalline samples were obtained with the exception of PGAPHIB7.4 copolymer. The introduction of HIB units decreased the crystallization rate compared with pure PGA. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1901–1910, 2010  相似文献   

8.
A series of fluorinated poly(amide imide)s were prepared from 1,4‐bis(2′‐trifluoromethyl‐4′‐trimellitimidophenoxy)benzene and various aromatic diamines [3,3′,5,5′‐tetramethyl‐4,4′‐diaminediphenylmethane, α,α‐bis(4‐amino‐3,5‐dimethyl phenyl)‐3′‐trifluoromethylphenylmethane, 1,4‐bis(4′‐amino‐2′‐trifluoromethylphenoxy)benzene, 4‐(3′‐trifluoromethylphenyl)‐2,6‐bis(3′‐aminophenyl)pyridine, and 1,1‐bis(4′‐aminophenyl)‐1‐(3′‐trifluoromethylphenyl)‐2,2,2‐trifluoroethane]. The fluorinated poly(amide imide)s, prepared by a one‐step polycondensation procedure, had good solubility both in strong aprotic solvents, such as N‐methyl‐2‐pyrrolidinone, dimethylacetamide, dimethylformamide, dimethyl sulfoxide, and cyclopentanone, and in common organic solvents, such as tetrahydrofuran and m‐cresol. Strong and flexible polymer films with tensile strengths of 84–99 MPa and ultimate elongation values of 6–9% were prepared by the casting of polymer solutions onto glass substrates, followed by thermal baking. The poly(amide imide) films exhibited high thermal stability, with glass‐transition temperatures of 257–266 °C and initial thermal decomposition temperatures of greater than 540 °C. The polymer films also had good dielectric properties, with dielectric constants of 3.26–3.52 and dissipation factors of 3.0–7.7 × 10?3, and acceptable electrical insulating properties. The balance of excellent solubility and thermal stability associated with good mechanical and electrical properties made the poly(amide imide)s potential candidates for practical applications in the microelectronics industry and other related fields. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1831–1840, 2003  相似文献   

9.
A new p‐phenylene–vinylene–thiophene‐based siloxane block copolymer has been synthesized. The copolymer consists of alternating rigid and flexible blocks. The rigid blocks are composed of phenylene–vinylene–thiophene‐based units, and the flexible blocks are derived from 1,3‐dialkyldisiloxane units. The former component acts as the chromophore, and allows fine tuning of band gap for blue‐light emission, while the latter imparts good solubility of the copolymer in organic solvents, and thus, should enhance processibility of the resulting copolymer. The thermal properties of the copolymer have been characterized by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The photoluminescence (PL) of the copolymer in solution and in cast film has been studied. The effects of concentration on the PL intensity of the new copolymer in polymer blends with poly(methyl methacrylate) (PMMA) and poly(vinyl carbazole) (PVK) have also been described. Efficient energy transfer from PVK to the new block copolymer in the blended film was observed. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1450–1456, 2000  相似文献   

10.
Two types of novel fluorinated diimide‐diacid monomers—[2,2′‐(4,4′‐(3′‐methylbiphenyl‐2,5‐diyl)bis(oxy)bis(3‐(trifluoromethyl)‐4,1‐phenylene))bis(1,3‐dioxoisoindoline‐5‐carboxylic acid)] (III) and [2,2′‐(4,4′‐(3′‐(trifluoromethyl)biphenyl‐2,5‐diyl)bis(oxy)bis(3‐(trifluoromethyl)‐4,1‐phenylene))bis(1,3‐dioxoisoindoline‐5‐carboxylic acid)] (IV)—were respectively designed and prepared by the condensation of diamines I and II with two molar equivalents of trimellitic anhydride. From both diimide‐diacids, two series of novel poly(amide‐imide)s (PAIs) (IIIa–IIIe and IVa–IVe) bearing different pendant groups were prepared by direct polymerization with various aromatic diamines (a–e). All the PAIs had a high glass transition temperatures (Tgs, 232–265 °C), excellent thermal stability (exhibiting only 5% weight loss at 493–542 °C under nitrogen) and good solubility in various organic solvents due to the introduction of the bulky pendant groups. The cast films of these PAIs (80–90 μm) had good optical transparency (73–81% at 450 nm, 85–88% at 550 nm and 87–89% at 800 nm) and low dielectric constants (2.65–2.98 at 1 MHz). The spin‐coated films of these PAIs presented a minimum birefringence value as low as 0.0077–0.0143 at 650 nm and low optical absorption at the near‐infrared optical communication wavelengths of 1310 and 1550 nm. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3243–3252  相似文献   

11.
Several new glycols containing both imide and sulfone groups, sulfonyl bisimide glycol (SBIG), were prepared from primary aromatic diamine, trimellitic anhydride and excess low molecular glycols. Then these SBIGs were used as chain extender to prepare a series of thermoplastic poly(imide‐urethane) (PIU), which introduced imide rings into the backbones. Compared to conventional linear polyurethane (PU), these PIUs exhibited better thermal stabilities because of the presence of the sulfone and built‐in imide groups. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4469–4477, 2005  相似文献   

12.
A series of poly(amide‐imide)s were prepared using a new monomer, 1,3‐bis(trimellitimido)‐2,4,6‐trimethyl benzene (BTB), with four different diamines: 1,4‐phenylene diamine (PDA), 2,4‐diamino mesitylene (DAM), 2,2′‐dimethyl‐4,4′‐diamino biphenyl (DMDB), and 2,2′‐bis(trifluoromethyl)‐4,4′‐diamino biphenyl (TFDB). They were prepared by the condensation method in N‐methyl‐2‐pyrrolidinone (NMP) solvent using triphenyl phosphate and pyridine as condensing agents. The synthesized poly(amide‐imide)s were characterized by Fourier transform infrared and 1H NMR techniques. Films were prepared and characterized using DSC, thermogravimetric analysis (TGA), a prism coupler, and a film dielectric property analyzer. DSC measurement showed that the glass‐transition temperatures of the polymers were in the range of 259–327 °C. TGA analysis showed 5% weight loss, in the range of 472–514 °C. The refractive index varied from 1.6004 to 1.6586 in the following increasing order: BTB‐TFBM < BTB‐DAM < BTB‐DMDB < BTB‐PDA. For the poly(amide‐imide) films, the birefringence varied in the range of 0.0319–0.0580, in the following increasing order: BTB‐DAM < BTB‐TFBM < BTB‐DMDB < BTB‐PDA. The capacitance method showed that the dielectric constant of poly(amide‐imide) varied with the diamine structure; no difference was found by the optical method. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 137–143, 2004  相似文献   

13.
Poly(o‐aminophenethyl alcohol) and its copolymers containing the aniline unit were synthesized in aqueous hydrochloric acid medium by chemical oxidative polymerization. The chemical composition of these novel polymers was determined spectroscopically, and their viscosities were measured. These polymers exhibit good solubility in organic solvents that is attributed mainly to the polar hydroxyethyl side groups. Their structures (chain conformation and morphological structure) and properties (conductivity, electrochemical characteristics, glass transition, and degradation behavior) were characterized and then interpreted on the basis of the chemical composition along with the electronic and steric hindrance effects associated with the hydroxyethyl side group. Overall, the side group has a significant effect on the polymerization and influences the structure, chain conformation, and properties of the resultant polymer. The poly(aniline‐coo‐aminophenethyl alcohol)s containing 20–40 mol % o‐aminophenethyl alcohol units are potential conducting materials for microelectronic and electromagnetic shielding applications because they are easier to process than polyaniline but retain its beneficial properties. These polymers can also be used as a functional conducting polymer intermediate owing to the reactivity of the side group. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 983–994, 2002  相似文献   

14.
Thin films of copoly(amide imide)s (coPAIs) from dichloro‐dianhydride of trimellitimide‐N‐acetic acid and mixtures of diphenylmethane diamine (DPA) and cardo 9,9′‐bis‐phenylfluorene diamine (CDA) cast from solutions in dimethylacetamide (DMAA) were characterized by wide‐angle and small‐angle X‐ray scattering (WAXS and SAXS), dynamic mechanical thermal analysis (DMTA) (temperature interval: 293–703 K, frequency range: 1–100 Hz), and thermogravimetric analysis (TGA) (nitrogen flux, temperature interval: 303–973 K). The mean interchain spacings (WAXS) smoothly increased with the CDA/DPA molar ratio from 0.55 nm for CDA/DPA = 0/1 up to 0.60 nm for CDA/DPA = 1/0. The smooth patterns of the SAXS curves for all coPAIs were explained by the smearing‐out of electron density differences between densely‐packed and loosely‐packed microregions of coPAIs due to the wide dispersion of their sizes. The step‐like patterns of the TGA traces in the temperature intervals below and above 600 K were associated with successive weight losses due to the evaporation of residual water and of DMAA, and to the thermal degradation of diamine and dianhydride chain fragments, respectively. As could be inferred from the TGA data, the loosely‐packed regions comprise about 25–35% of the total volume of studied coPAIs. The mechanical relaxations observed in all coPAIs at Tβ < Tα′ < Tα (DMA) were attributed to the onset of non‐cooperative segment motion in loosely‐packed regions, of cooperative segment motion in loosely‐packed regions, and of cooperative segment motion in densely‐packed regions, respectively. At constant frequency, the sub‐glass relaxations were roughly composition‐independent, while chain‐stiffening effect was assumed to be responsible for the smooth increase of Tα′ and Tα, as well as of the corresponding apparent activation energies with the CDA/DPA ratio. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
A series of novel aromatic poly(ether imide)s (PEI) containing ortho‐catenated phenylene rings and pendant trifluoromethyl group have been prepared from 1,2‐bis(3,4‐dicarboxyphenoxy)benzene dianhydride (1) with seven trifluoromethyl‐substituted aromatic bis(ether amine)s ( 2a‐g ) via a conventional two‐stage process that included ring‐opening polyaddition to form the poly(amic acid)s followed by chemical imidization to the polyimides. These PEIs had inherent viscosities in the range of 0.45–1.17 dL/g that corresponded to weight–average and number–average molecular weights (by gel‐permeation chromatography) of 42,000–102,000 and 28,500–67,500, respectively. All the PEIs were readily soluble in many organic solvents and could be solution‐cast into transparent, flexible, and strong films. These films were essentially colorless; they had a very low yellowness index of 4.34–6.55 and an UV–vis absorption cut‐off wavelength at 361–370 nm. The PEIs exhibited moderate‐to‐high glass‐transition temperatures (Tg) in the range of 185–270 °C, softening temperatures (Ts) in the range of 184–275 °C, and 10% weight loss temperatures higher than 466 °C in nitrogen or in air. They also showed low moisture absorptions of 0.49–0.70% and low dielectric constants of 2.78–3.26 (measured at 10 kHz). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3092–3102, 2006  相似文献   

16.
A new dicarboxylic acid modified Mg‐Al LDH (DLDH) containing imide groups was prepared and its effects on the thermal and mechanical properties of the new synthesized aliphatic‐aromatic poly (amide‐imide) (PAI) were investigated via preparation of PAI/nanocomposite films by solution casting method. The results of X‐ray diffraction (XRD), field emission‐scanning electron microscopy (FE‐SEM) and transmission electron microscopy (TEM) showed a uniform dispersion for LDH layers into the PAI matrix. For comparison, the effects of polyacrylic acid‐co‐poly‐2‐acrylamido‐ 2‐methylpropanesulfonic acid (PAMPS‐co‐PAA) modified Mg‐Al LDH (ALDH) on the PAI properties were also studied. The thermogravimetric analysis (TGA) results exhibited that the temperature at 5 mass% loss (T5) increased from 277 °C to 310 °C for nanocomposite containing 2 mass% of DLDH, while T5 for nanocomposite containing 2 mass% of ALDH increased to 320 °C, along with the more enhancement of char residue compared to the neat PAI. According to the tensile test results, with 5 mass% DLDH loading in the PAI matrix, the tensile strength increased from 51.6 to 70.8 MPa along with an increase in Young's modulus. Also the Young's modulus of PAI nanocomposite containing 5 mass% ALDH reduced from 1.95 to 0.81 GPa.  相似文献   

17.
Segmented copolyesters, namely, poly(butylene terephthalate)–poly(ethylene terephthalate‐co‐isophthalate‐co‐sebacate) (PBT‐PETIS), were synthesized with the melting transesterification processing in vacuo condition involving bulk polyester produced on a large scale (PBT) and ternary amorphous random copolyester (PETIS). Investigations on the morphology of segmented copolyesters were undertaken. The two‐phase morphology model was confirmed by transmission electron microscopy and dynamic mechanical thermal analysis. One of the phases was composed of crystallizable PBT, and the other was a homogeneous mixture of PETIS and noncrystallizable PBT. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2257–2263, 2003  相似文献   

18.
Transparent plasticized gels with good mechanical, optical, and dielectric properties have important applications in various fields. We prepared a new gel using a poly(butylene terephthalate)‐co‐poly(alkylene glycol terephthalate) (PBT‐co‐PAGT) copolymer and a plasticizer, dibutyl adipate (DBA). This method improved the polymer crystallinity, and suppressed particle formation in cast‐films when the polymer was dissolved in 1,1,1,3,3,3‐hexafluoro‐2‐propanol, followed by solvent evaporation, and enabled uniform swelling of the polymer network by the plasticizer to form a transparent and flexible gel. The dielectric constants of the developed PBT‐co‐PAGT/DBA gels are much higher than those of PBT‐co‐PAGT films at low frequency. We believe that these PBT‐co‐PAGT/DBA gels could be used as photovoltaic, dielectric, and actuator materials. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 829–832  相似文献   

19.
A set of poly(urethane‐imide)s were prepared using blocked Polyurethane (PU) prepolymer and pyromellitic dianhydride (PMDA). The PU prepolymer was prepared by the reaction of polyether glycol and 2,4‐tolylene diisocyanate, and end capped with N‐methyl aniline. The PU prepolymer was reacted with PMDA until the evolution of carbon dioxide ceased. The effect of tertiary amine catalysts, organo tin catalysts, solvents, and reaction temperature were studied and compared with the poly(urethane‐imide) prepared using phenol‐blocked PU prepolymer. N‐methyl aniline blocked PU prepolymer gave a higher molecular weight poly(urethane‐imide) at a lower reaction temperature in a shorter time. Amine catalysts were found to be more efficient than organo tin catalysts. The reaction was favorable in particular with N‐ethylmorpholine and diazabicyclo(2.2.2)octane (DABCO) as catalysts, and dimethylpropylene urea as a reaction medium. The poly(urethane‐imide)s were characterized by FTIR, GPC, TGA, and DSC analyses. The molecular weight decreased with an increase in reaction temperature. The thermal stability of the PU was found to increase by the introduction of imide component. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4032–4037, 2000  相似文献   

20.
In this study, novel biodegradable materials were successfully generated, which have excellent mechanical properties in air during usage and storage, but whose structure easily disintegrates when immersed in water. The materials were prepared by melt blending poly(L ‐lactic acid) (PLLA) and poly(butylene adipate‐co‐terephthalate) (PBAT) with a small amount of oligomeric poly(aspartic acid‐co‐lactide) (PAL) as a degradation accelerator. The degradation behavior of the blends was investigated by immersing the blend films in phosphate‐buffered saline (pH = 7.3) at 40 °C. It was shown that the PAL content and composition significantly affected morphology, mechanical properties, and hydrolysis rate of the blends. It was observed that the blends containing PAL with higher molar ratios of L ‐lactyl [LA]/[Asp] had smaller PBAT domain size, showing better mechanical properties when compared with those containing PAL with lower molar ratios of [LA]/[Asp]. The degradation rates of both PLLA and PBAT components in the ternary blends simultaneously became higher for the blends containing PAL with higher molar ratios of [LA]/[Asp]. It was confirmed that the PLLA component and its decomposed materials efficiently catalyze the hydrolytic degradation of the PBAT component, but by contrast that the PBAT component and its decomposed materials do not catalyze the hydrolytic degradation of the PLLA component in the blends. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号