首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Near‐infrared (NIR) emissive conjugated polymers were prepared by palladium‐catalyzed Sonogashira polymerization of diiodobenzene‐functionalized aza‐borondipyrromethene (Aza‐BODIPY) monomers, which were substituted at 3 and 5 or 1 and 7 positions on the Aza‐BODIPY core, with 1,4‐diethynyl‐2,5‐dihexadecyloxybenzene or 3,3′‐didodecyl‐2,2′‐diethynyl‐5,5′‐bithiophene. The structures of the polymers were confirmed by 1H NMR, 13C NMR, 11B NMR, Fourier transform infrared (FT‐IR) spectroscopies, and size exclusion chromatography (SEC). The optical properties were then characterized by UV–vis absorption and photoluminescence (PL) spectroscopies, and theoretical calculation using density‐functional theory (DFT) method. The polymers were fusible and soluble in common organic solvents including tetrahydrofuran (THF), o‐xylene, toluene, CHCl3, and CH2Cl2, etc. The UV–vis absorption and PL spectra of the polymers shifted to long wavelength region in comparison with simple Aza‐BODIPY as the counterpart because of extended π‐conjugation of the polymers. The polymers efficiently emitted NIR light with narrow emission bands at 713~777 nm on excitation at each absorption maximum. Especially, the polymer attached 1,4‐diethynyl‐2,5‐dihexadecyloxybenzene to 3,5‐position on the core revealed intense quantum yields (?F = 24%) in this NIR region (753 nm). © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

2.
Polyacetylenes ( P1–P4 ) containing different stilbene groups, ? [(CH?C) ? Ph? CH?CH? Ph? R]n? (R?OCmH2m+1 (m = 4 ( P1 ), 10 ( P2 ), 16 ( P3 )), or NO2 ( P4 )) were designed and synthesized, respectively, using [Rh(nbd)Cl]2 as a catalyst. Their structures and properties were characterized and evaluated by FTIR, 1H‐NMR, 13C‐NMR, GPC, and UV, PL, respectively. The optical limiting and nonlinear optical properties were investigated by using a frequency doubled, Q‐switched, mode‐locked Continuum ns/ps Nd:YAG laser system and their optical limiting mechanism was discussed. It is surprising to see that the stilbene pendants endow the polyacetylenes with a high thermal stability (Td ≥ 270 °C), novel optical limiting properties and large third‐order nonlinear optical susceptibilities (up to 4.61 × 10?10 esu). The optical limiting mechanism is mainly originated from reverse saturable absorption of molecules. In addition, it is found that the polymer with electron accepted NO2 moiety exhibits better optical properties than that with electron donated alkoxy group because of larger π electron delocalization and dipolar effect. The strong interaction between stilbene pendants and the polyene main chain significantly results in red‐shift of fluorescence emitting peak. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4529–4541, 2008  相似文献   

3.
Poly(3‐hexylthiophene)/single‐walled carbon nanotube (P3HT/SWNT) materials are synthesized using an insitu Grignard metathesis approach. The structural properties and photophysics of the materials are studied using a multitude of techniques, including 1H NMR, FTIR, UV–vis absorption, Raman, photoluminescence (PL), and transient absorption spectroscopies. P3HT/SWNT composites with high P3HT regioregularity (rr > 96%) are observed. Raman spectroscopic data on the solid samples reveals an increase in the dispersion rate parameter with increasing SWNT concentration, thereby indicating close overlap and strong interactions between P3HT and the carbon nanotubes. Changes in the solution‐phase PL quantum yields and excited‐state lifetimes relative to pure P3HT support these conclusions, and indicate that strong interactions persist even after the composites are dispersed in organic solvents. The high regioregularity and enhanced P3HT–SWNT interactions are promising attributes for improving the morphology and efficiency of functional P3HT/SWNT materials. © 2013 Wiley Periodicals, Inc. J. Polym. Sci. Part B: Polym. Phys. 2014 , 52, 310–320  相似文献   

4.
The reaction of phenyl propynyl ether and diphenyl disulfide in the presence of 1 mol % tetrakis(triphenylphosphine)palladium as a model reaction of the polymerization of bis(4‐prop‐2‐ynyloxyphenyl) disulfide ( 1a ) gave a Z‐substituted dithioalkene. No E‐substituted dithioalkene was formed in this reaction. The palladium‐catalyzed bisthiolation polymerization of a diethynyl disulfide derivative, 1a , in benzene, was carried out to give a hyperbranched polymer ( 5a ) containing a Z‐substituted dithioalkene unit after reaction for 4 h at 70 °C. From the gel permeation chromatography analysis (chloroform, PSt standards), the number‐average and weight‐average molecular weights of 5a were found to be 8,100 and 57,000, respectively. The structure of 5a was confirmed by 1H and 13C NMR spectra. The obtained polymer was soluble in common organic solvents such as benzene, acetone, and CHCl3. Polymerization for more than 5 h gave insoluble products. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3580–3587, 2007  相似文献   

5.
A series of phosphorylated and thiophosphorylated compounds of 2‐substituted benzimidazoles have been synthesized by the reaction of POCl3 and PSCl3 with 2‐substituted benzimidazoles in different molar ratios. The compounds have been characterized by elemental analyses, infrared, and 1H NMR and 31P NMR spectral studies. These compounds were found to be insecticidal when tested against Periplenata americana. © 2008 Wiley Periodicals, Inc. Heteroatom Chem 19:154–157, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20385  相似文献   

6.
The geometric structure of polymethylacetylene (PMA), polypentylacetylene (PPA), and poly(t-butylacetylene) (PTA) was investigated by 1H NMR, 13C NMR, and IR spectroscopies. It was shown that both NMR techniques can be used to determine the trans isomer content of PPA and PTA, whereas the 1H NMR and IR methods can be used for PMA. A calibration curve was constructed by using the 965- and 720-cm?1 bands of the IR spectrum of PPA, and could be used in future work for the same purpose if the samples had molecular weights similar to that of the one used in this study. The isomerization kinetics of PTA was investigated and cis trans activation energies of 88 and 121 kJ/mol were calculated in solution and in the solid state, respectively. Heat treatment of the PMA and PPA samples always leads to a cis trans isomerization with a 100% trans content under extreme conditions. Moreover, a cis trans isomerization of PTA was induced in CCl4, CDCl3, toluene, and benzene, but a trans cis isomerization was induced in decalin. The reversible isomerization of PTA covered a trans isomer concentration ranging form 25 to 60%.  相似文献   

7.
Phenylacetylene derivatives containing carbazole ( 1 ) and fluorene ( 2 ) moieties were polymerized by [Rh(nbd)Cl]2 into corresponding polymers P 1 and P 2 of high molecular weights (Mw ~ 150 × 103–465 × 103) in high yields (up to 98%). The polymers were characterized by NMR, IR, UV, PL, and CV techniques. Hybrids of the polymers with multiwalled carbon nanotubes (MWNTs) were prepared by simply mixing the two components in common organic solvents such as dichloromethane. The solvating power of the polymer carrying the electron‐donating carbazolyl pendant (P 1 ) is stronger than that of its counterpart carrying fluorenyl pendant (P 2 ), due to the stronger donor–acceptor (D–A) interaction between the P 1 chains and the MWNT walls. This work clearly manifests that D–A effect plays an important role in the polymer‐aided MWNT dispersion in organic solvents. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4995–5005, 2009  相似文献   

8.
A series of random copolymers poly(3‐ethynylthiophene)‐copoly(2‐(4‐decyloxyphenyl)‐5‐(4‐ethynylphenyl)‐1,3,4‐oxadiazole) with different oxadiazole content ( P2 – P4 ) and homopolymer poly(3‐ethynylthiophene) ( P1 ) as well as poly(2‐(4‐decyloxyphenyl)‐5‐(4‐ethynylphenyl)‐1,3,4‐oxadiazole) ( P5 ) were prepared. The copolymers ( P2 – P4 ) are completely soluble in common organic solvents. The structures and properties of all polymers were characterized and evaluated by FTIR, 1H NMR, 13C NMR, TGA, UV, PL, GPC, and nonlinear optical (NLO) analyses. The incorporation of diaryl‐oxadiazole into polyacetylene‐containing thiophene significantly endows copolymers with higher thermal stability, which may origin from the synergetic effect of the “jacket effect” of diaryl‐oxadiazole units and the effect of retarding or eliminating a few 6π‐electrocycliaztion proceeds of oxadiazole‐containing polyacetylene due to the hindrance of thiophene units. When the copolymer ( P3 ) posses more regular alternating thiophene pendants and oxadiazole pendants arrangement along the polymer backbone, it shows good thermal stability (Td up to 388 °C) and larger third‐order nonlinear optical susceptibility (χ(3) up to 11.0 × 10?11 esu). © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

9.
Butadiene‐isoprene copolymerization with the system V(acac)3‐MAO was examined. Crystalline or amorphous copolymers were obtained depending on isoprene content. Both butadiene and isoprene units exhibit a trans‐1,4 structure and are statistically distributed along the polymer chain. Polymer microstructure, comonomer composition, and distribution along the polymer chain were determined by 13C and 1H NMR analysis. The thermal and X‐ray behaviors of the copolymers were also investigated and compared with results from solid‐state 13C NMR experiments. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4635–4646, 2007  相似文献   

10.
A novel monomer, 2,2‐bis‐(4′‐fluorobenzoylphenoxy)‐4,4,6,6‐bis[spiro‐(2′,2″‐dioxy‐1′, 1′‐biphenylyl)] cyclotriphosphazene, was synthesized and polymerized with 4,4′‐difluorobenzophenone as a comonomer and 4,4′‐isopropylidenediphenol or 4,4′‐(hexafluoroisopropylidene) diphenol in N,N‐dimethylacetamide at 162 °C for 4 h to give two series of aromatic cyclolinear phosphazene polyetherketones containing bis‐spiro‐substituted cyclotriphosphazene groups. The structure of the monomer was confirmed by 1H, 13C, and 31P NMR. The effect of the incorporation of the bis‐spiro‐substituted cyclotriphosphazene group on the thermal properties of these polymers was investigated by DSC and thermogravimetric analysis. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2993–2997, 2001  相似文献   

11.
The (E) isomer in mixtures of (E) and (Z) 1,3‐hexadiene was polymerized with the system CoCl2(PiPrPh2)2‐MAO, a highly active and stereospecific catalyst for the preparation of 1,2 syndiotactic polybutadiene. A new crystalline polymer with a melting point of 109 °C was obtained. The polymer was characterized by IR, NMR (13C, 1H in solution and 13C in the solid‐state), X‐ray diffraction, DSC, GPC and it was found to have a trans‐1,2 syndiotactic structure with a 5.18 ± 0.04 Å fiber periodicity. Since only the (E) isomer was polymerized, at the end of the reaction we were able to separate the (Z) isomer, which was ultimately polymerized with CpTiCl3‐MAO at low temperature, obtaining a low molecular weight, stereoregular polymer that, characterized by IR and NMR methods, was found to exhibit a cis‐1,2 syndiotactic structure, never reported before. Molecular mechanics calculations were carried out on the trans‐1,2 syndiotactic polymer and structural models consistent with the X‐ray diffraction data are proposed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5339–5353, 2007  相似文献   

12.
The following noble series of soluble π‐conjugated statistical copolymers was synthesized by palladium catalyzed Suzuki polymerization: poly[(9,9‐dioctylfluorene)‐alt‐(4,7‐bis(3′,3′‐dihepyl‐3,4‐propylenedioxythienyl)‐2,1,3‐benzothiadiazole)] (PFO‐PTBT) derived from poly(9,9‐dioctylfluorene) (PFO) and poly[(4,7‐bis(3′,3′‐dihepyl‐3,4‐propylenedioxythienyl)‐2,1,3‐benzothiadiazole)] poly(heptyl4‐PTBT). The structure and properties of these polymers were characterized using 1H‐, 13C‐NMR, UV–visible spectroscopy, elemental analysis, GPC, DSC, TGA, photoluminescence (PL), and cyclic voltammetry (CV). The statistical copolymers, PFO‐PTBT (9:1, 8.4:1.6, 6.5:3.5), were soluble in common organic solvents and easily spin coated onto indium‐tin oxide (ITO) coated glass substrates. The weight‐average molecular weight (Mw) and polydispersity of the PFO‐PTBT ranged from (1.0–4.2) × 104 and 1.5–2.3, respectively. Bulk heterojunction photovoltaic cells with an ITO/PEDOT/PFO‐PTBT:PCBM/LiF/Al configuration were fabricated, and the devices using PFOPTBT (6.5:3.5) showed the best performance compared with those using PFO‐PTBT (9:1, 8.4:1.6). A maximum power conversion efficiency (PCE) of 0.50% (Voc = 0.66 V, FF = 0.29) was achieved with PFO‐PTBT (6.5:3.5). © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6175–6184, 2008  相似文献   

13.
Series of high‐cis and cis/trans poly[(fluorophenyl)acetylene]s (PFPhA) have been prepared by polymerization of (2‐fluorophenyl)acetylene, (3‐fluorophenyl)acetylene, and (4‐fluorophenyl)acetylene with catalysts: [Rh(1,5‐cyclooctadiene) OCH3]2 (high‐cis PFPhAs) and tungsten(VI) oxychloride/tetraphenyltin (cis/trans PFPhAs). The molecular weight and configurational stability under various conditions at room temperature were studied for both PFPhAs series by means of size exclusion chromatography, 1H‐NMR, and UV‐vis techniques. All samples exhibited slow degradation when exposed to the atmosphere in the solid state; the rate of degradation was independent on the F‐position on the Ph ring. The rate of degradation increased up to three orders of magnitude in the tetrahydrofuran solution where it was higher for high‐cis polymers compared with their cis/trans counterparts. The degradation of high‐cis PFPhAs was accompanied by significant cis‐to‐trans isomerization in aerated tetrahydrofuran solution. Rate of degradation and isomerization exhibited the same dependence on the F‐position on the Ph ring. The hypothesis was postulated that the degradation of high‐cis PFPhAs in solution was accelerated by cis‐to‐trans isomerization due to which the content of unpaired electrons on the main chains is enhanced. In both high‐cis and cis/trans series of polymers the ortho‐substituted isomers exhibited an enhanced stability compared with meta‐ and para‐substituted isomers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4296–4309, 2010  相似文献   

14.
In the presence of KF·2H2O, furoylmethyltriphenylarsonium bromide (1a) or thienoylmethyltriphenylarsonium bromide (1b) reacted with 2-[(un)substituted benzylidene]malononitrile (2) in chloroform at room temperature to give trans-3,3-dicyano-1-furoyl-2-[(un)substituted phenyl]cyclopropane (3a) or trans-3,3-dicyano-1-thienoyl-2- [(un)substituted phenyl]cyclopropane (3b) respectively in good yield with high stereoselectivity. The structures of product 3 were confirmed by IR, MS, 1^H NMR, 1^H-1^H COSY and microanalysis. The relative configuration of product 3 was determined by 1^H-1^H NOESY technique. The mechanism for the formation of product 3 was also proposed.  相似文献   

15.
The polysilanes [RMe2Si(CH2)x(Me)Si]n [x = 2, 3; R = 2‐Fu ( 1, 2 ), 5‐Me‐2‐Fu ( 3, 4 )] bearing furyl‐substituted carbosilyl side chains have been synthesized by dehalocondensation reaction (Wurtz coupling) of the corresponding carbosilanes using sodium dispersion in refluxing toluene. On the other hand, analogous polysilanes with appended thienyl groups [x = 2, 3; R = 2‐Th ( 5, 6 ), 4‐Me‐2‐Th ( 7, 8 )] are only accessible by the reaction of the corresponding carbosilane precursors under mild Wurtz coupling conditions (THF, RT). These polysilanes reveal monomodal molecular weight distribution with Mw/PDI = 3.3–5.4 × 104/1.22–1.47 ( 1–4 ) and 9.1–14.4 × 104/1.45–1.61 ( 5–8 ) and are characterized by FT‐IR, multinuclear (1H, 13C{1H}, 29Si{1H}) NMR, and UV/PL spectral studies as well as thermogravimetric analysis (TGA). Preliminary studies on the reactivity of polysilane 2 with palladium acetate (toluene, RT) reveal the formation of spherical palladium nanoparticles of size 8.2 ± 0.6 nm, which remain stable in solution for several weeks. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7816–7826, 2008  相似文献   

16.
Twelve compounds unknown in the literature N‐(E)‐2‐stilbenyloxymethylenecarbonyl substituted hydrazones of 2‐, 3‐ and 4‐pyridinecarboxaldehydes, as well as methyl‐3‐pyridylketone have been prepared. The stereochemical behavior of these compounds in dimethyl‐d6 sulfoxide solution has been studied by 1H NMR technique. The E geometrical isomers and cis/trans amide conformers have been found for N‐substituted hydrazones 1–12. EI induced mass spectral fragmentation of these compounds were also investigated. The data obtained create the basis for distinguishing isomers.  相似文献   

17.
A new hyperbranched ( P1 ) and linear copolyfluorene ( P2 ) were prepared from 2,4,7‐trifunctional (branching) and 2,7‐bifunctional fluorene monomer, respectively, by the Wittig reaction, followed with end‐capping by aromatic oxadiazole groups, to study the effect of hyperbranch structure. The weight‐average molecular weights (Mw) of P1 and P2 , determined by gel permeation chromatography using polystyrene as standard, were 33,000 and 25,700, respectively. The polymers were readily soluble in common organic solvents and exhibited good thermal stability (Td > 400 °C). Optical properties, both in solution and film state, were investigated using absorption and photoluminescence (PL) spectra. In film state, the absorption and PL spectra peaked at 401–425 nm and 480–495 nm, respectively. The P1 showed energy funnel effect and enhanced fluorescence efficiency owing to hyperbranched structure and terminal oxadiazole groups. The HOMO and LUMO levels of P1 ( P2) , estimated from cyclic voltammograms, are ?5.34 (?5.25) eV and ?2.94 (?2.94) eV, respectively. Two‐layer polymer light‐emitting diodes devices (ITO/PEDOT/ P1 /Ca/Al) exhibited maximal luminance and luminous efficiency of 3630 cd/m2 and 0.78 cd/A, respectively, which are superior to its linear counterpart P2 (598 cd/m2, 0.11 cd/A). © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5541–5551, 2007  相似文献   

18.
Dihydrophilic block copolymers of poly(ethylene oxide)‐b‐polyglycidol were prepared and polyglycidol blocks converted into ionic blocks containing  OP(O)(OH)2,  COOH, or  SO3H groups. Although phosphorylation of polyhydroxy compounds with POCl3 usually leads to insoluble products, phosphorylation of poly(ethylene oxide)‐b‐polyglycidol using a POCl3/ OH ratio equal to 1/1 gave soluble products, predominantly monoester of phosphoric acid (after hydrolysis) (provided that the reaction was conducted in triethyl phosphate as solvent). All copolymers were characterized by 1H NMR, 13C NMR, and/or 31P NMR spectra for confirming their structure. The degree of substitution was determined from quantitative 13C NMR spectroscopy (inverted‐gate decoupling‐acquisition mode). Preliminary results indicate that from these three groups of block copolymers the phosphoric acid esters are the most effective ones at least in controlling the growth of CaCO3 crystals in aqueous solution. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 955–963, 2001  相似文献   

19.
Three novel fluorene‐containing poly(arylene ethynylene)s with amino‐functionalized side groups were synthesized through the Sonogashira reaction. They were poly{9,9‐bis[6′‐(N,N‐diethylamino)hexyl]‐2,7‐fluorenylene ethynylene}‐altco‐{2,5‐bis[3′‐(N,N‐diethylamino)‐1′‐oxapropyl]‐1,4‐phenylene} ( P1 ), poly{9,9‐bis[6′‐(N,N‐diethylamino)hexyl]‐2,7‐fluorenylene ethynylene} ( P2 ), and poly({9,9‐bis[6′‐(N,N‐diethylamino)hexyl]‐2,7‐fluorenylene ethynylene}‐altco‐(1,4‐phenylene)) ( P3 ). Through the postquaternization treatment of P1 – P3 with methyl iodide, we obtained their cationic water‐soluble conjugated polyelectrolytes (WSCPs): P1′ – P3′ . The water solubility was gradually improved from P3′ to P1′ with increasing contents of hydrophilic side chains. After examining the ultraviolet–visible absorption and photoluminescence (PL) spectra, fluorescence lifetimes, and dynamic light scattering data, we propose that with the reduction of the water solubility from P1′ to P3′ , they exhibited a gradually increased degree of aggregation in H2O. The PL quantum yields of P1′ – P3′ in H2O displayed a decreasing tendency consistent with the increased degree of aggregation, suggesting that the pronounced degree of aggregation was an important reason for the low PL quantum yields of WSCPs in H2O. Two structurally analogous water‐soluble trimers of P2′ and P3′ , model compounds 2,7‐bis(9″,9″‐bis{6‴‐[(N,N‐diethyl)‐N‐methylammonium] hexyl}‐2″‐fluorenylethynyl)‐9,9‐bis{6′‐[(N,N‐diethyl)‐N‐methylammonium]hexyl}fluorene hexaiodide and 1,4‐bis(9′,9′‐bis{6″‐[(N,N‐diethyl)‐N‐methylammonium]hexyl}‐2′‐fluorenylethynyl)benzene tetraiodide, were synthesized. The amplified fluorescence quenching of these WSCPs by Fe(CN)64− in H2O was studied by comparison with a corresponding analogous trimer. The effects of aggregation on the fluorescence quenching may be two‐edged in these cases. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5778–5794, 2006  相似文献   

20.
Three new types of siloxane‐based photoactive liquid crystalline polymers containing azo side groups were synthesized through the click chemistry route. The polymers having molecular weight range of 14,000–34,000 g mol?1 were soluble in most of the polar solvents like chloroform, tetrahydrofuran, dimethylformamide, dimethyl sulfoxide, and dichloromethane. The photoresponsive trans–cis photoisomerization under UV radiation and cis–trans relaxation process in dark for the polymers were studied. The isomerization rate constants were found to be 0.01–0.04 sec?1 and 1.16*10?4–4.67*10?4 sec?1, respectively. It has been noted that the polymers showed high intensity absorption for n‐π* in chloroform. Both trans and cis forms of azide monomers having azo moiety exhibited molar extinction coefficient ( ? max) in the range of 22,000–33,000 L mol?1 cm?1. The thermotropic behavior of the polymers was studied by polarizing optical microscope (POM) and differential scanning calorimetry (DSC) experiments. Polymer P1 showed liquid crystalline textures of nematic droplets, whereas P2 showed smectic focal conic texture and nematic droplets. Polymer P1 was also studied for photomechanical bending on exposure to UV radiation. The polymers showed initial degradation temperature in the range of 210–275°C. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号