首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper is devoted to the time‐fractional gas dynamics equation with Caputo derivative. Fractional operators are very natural tools to model memory‐dependent phenomena. Modified iteration method is proposed to obtain the approximate and analytical solution of the fractional gas dynamics equation. This method is a combined form of the new iteration method and Laplace transform. Modified iteration method really is powerful and simple method compared with other methods. Existence and uniqueness of solution are proven. Numerical results for different cases of the equation are obtained. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
The flow through porous media can be better described by fractional models than the classical ones since they include inherently memory effects caused by obstacles in the structures. The variational iteration method was extended to find approximate solutions of fractional differential equations with the Caputo derivatives, but the Lagrange multipliers of the method were not identified explicitly. In this paper, the Lagrange multiplier is determined in a more accurate way and some new variational iteration formulae are presented.  相似文献   

3.
分数阶变分迭代法(FVIM)是一种处理分数阶微分方程的有效工具.用分数阶变分迭代法求解了时间分数阶类Boussinesq方程,并且作为一种特殊情况,得到了类Boussinesq方程B(2.2)的单孤子解.  相似文献   

4.
Fractional advection‐dispersion equations are used in groundwater hydrologhy to model the transport of passive tracers carried by fluid flow in a porous medium. In this paper we present two reliable algorithms, the Adomian decomposition method and variational iteration method, to construct numerical solutions of the space‐time fractional advection‐dispersion equation in the form of a rabidly convergent series with easily computable components. The fractional derivatives are described in the Caputo sense. Some examples are given. Numerical results show that the two approaches are easy to implement and accurate when applied to space‐time fractional advection‐dispersion equations. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2008  相似文献   

5.
In this article, we implement relatively new analytical techniques, the variational iteration method and the Adomian decomposition method, for solving nonlinear partial differential equations of fractional order. The fractional derivatives are described in the Caputo sense. The two methods in applied mathematics can be used as alternative methods for obtaining analytic and approximate solutions for different types of fractional differential equations. In these schemes, the solution takes the form of a convergent series with easily computable components. Numerical results show that the two approaches are easy to implement and accurate when applied to partial differential equations of fractional order.  相似文献   

6.
In this paper, we consider a nonhomogeneous space‐time fractional telegraph equation defined in a bounded space domain, which is obtained from the standard telegraph equation by replacing the first‐order or second‐order time derivative by the Caputo fractional derivative , α > 0 and the Laplacian operator by the fractional Laplacian ( ? Δ)β ∕ 2, β ∈ (0,2]. We discuss and derive the analytical solutions under nonhomogeneous Dirichlet and Neumann boundary conditions by using the method of separation of variables. The obtained solutions are expressed through multivariate Mittag‐Leffler type functions. Special cases of solutions are also discussed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
In this work, we design and analyze a numerical scheme for solving the generalized time‐fractional Telegraph‐type equation (GTFTTE) which is defined using the generalized time fractional derivative (GTFD) proposed recently by Agrawal. The GTFD involves the scale and the weight functions, and reduces to the traditional Caputo derivative for a particular choice of the weight and the scale functions. The scale and the weight functions play an important role in describing the behavior of real‐life physical systems and thus we study the solution behavior of the GTFTTE by varying the weight and the scale functions in the GTFD. We investigate the solution profile of the GTFTTE under some of these choices. We also provide the stability and the convergence analysis of the proposed numerical scheme for the GTFTTE. We consider two test examples to perform numerical simulations.  相似文献   

8.
The aim of the present work is to find the numerical solutions for time‐fractional coupled Burgers equations using a new novel technique, called fractional natural decomposition method (FNDM). Two examples are considered in order to illustrate and validate the efficiency of the proposed algorithm. The numerical simulation has been conducted to ensure the exactness of the present method, and the obtained solutions are offered graphically to reveal the applicability and reliability of the FNDM. The outcomes of the study reveal that the FNDM is computationally very effective and accurate to study the (2 + 1)‐dimensional coupled Burger equations of arbitrary order.  相似文献   

9.
The variational iteration method (VIM) has been applied to solve many functional equations. In this article, this method is applied to obtain an approximate solution for the Telegraph equation. Some examples are presented to show the ability of the proposed method. The results of applying VIM are exactly the same as those obtained by Adomian decomposition method. It seems less computation is needed in proposed method.© 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

10.
In this paper, we apply He''s Variational iteration method (VIM) for solving nonlinear Newell-Whitehead-Segel equation. By using this method three different cases of Newell-Whitehead-Segel equation have been discussed. Comparison of the obtained result with exact solutions shows that the method used is an effective and highly promising method for solving different cases of nonlinear Newell-Whitehead-Segel equation.  相似文献   

11.
In this paper, based on the homotopy analysis method (HAM), a powerful algorithm is developed for the solution of nonlinear ordinary differential equations of fractional order. The proposed algorithm presents the procedure of constructing the set of base functions and gives the high-order deformation equation in a simple form. Different from all other analytic methods, it provides us with a simple way to adjust and control the convergence region of solution series by introducing an auxiliary parameter ??. The analysis is accompanied by numerical examples. The algorithm described in this paper is expected to be further employed to solve similar nonlinear problems in fractional calculus.  相似文献   

12.
In this article, we consider the finite element method (FEM) for two‐dimensional linear time‐fractional Tricomi‐type equations, which is obtained from the standard two‐dimensional linear Tricomi‐type equation by replacing the first‐order time derivative with a fractional derivative (of order α, with 1 <α< 2 ). The method is based on finite element method for space and finite difference method for time. We prove that the method is unconditionally stable, and the error estimate is presented. The comparison of the FEM results with the exact solutions is made, and numerical experiments reveal that the FEM is very effective. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2013  相似文献   

13.
In this paper, the homotopy perturbation method is directly applied to derive approximate solutions of the fractional KdV equation. The results reveal that the proposed method is very effective and simple for solving approximate solutions of fractional differential equations.  相似文献   

14.
In this letter, we implement a relatively new analytical technique, the homotopy perturbation method (HPM), for solving linear partial differential equations of fractional order arising in fluid mechanics. The fractional derivatives are described in Caputo derivatives. This method can be used as an alternative to obtain analytic and approximate solutions of different types of fractional differential equations applied in engineering mathematics. The corresponding solutions of the integer order equations are found to follow as special cases of those of fractional order equations. Some numerical examples are presented to illustrate the efficiency and reliability of HPM. He's HPM, which does not need small parameter is implemented for solving the differential equations. In this method, a homotopy is introduced to be constructed for the equation. The initial approximations can be freely chosen with possible unknown constants that can be determined by imposing the boundary and initial conditions. It is predicted that HPM can be found widely applicable in engineering. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

15.
In this paper, we study the numerical solution to time‐fractional partial differential equations with variable coefficients that involve temporal Caputo derivative. A spectral method based on Gegenbauer polynomials is taken for approximating the solution of the given time‐fractional partial differential equation in time and a collocation method in space. The suggested method reduces this type of equation to the solution of a linear algebraic system. Finally, some numerical examples are presented to illustrate the efficiency and accuracy of the proposed method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
We formulate and analyze a novel numerical method for solving a time‐fractional Fokker–Planck equation which models an anomalous subdiffusion process. In this method, orthogonal spline collocation is used for the spatial discretization and the time‐stepping is done using a backward Euler method based on the L1 approximation to the Caputo derivative. The stability and convergence of the method are considered, and the theoretical results are supported by numerical examples, which also exhibit superconvergence. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1534–1550, 2015  相似文献   

17.
In this article, a reliable technique for calculating general Lagrange multiplier operator is suggested. The new algorithm, which is based on the calculus of variations, offers a simple method for calculation of general Lagrange multiplier for all forms. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 996–1001, 2011  相似文献   

18.
This paper presents a shifted fractional‐order Jacobi orthogonal function (SFJF) based on the definition of the classical Jacobi polynomial. A new fractional integral operational matrix of the SFJF is presented and derived. We propose the spectral Tau method, in conjunction with the operational matrices of the Riemann–Liouville fractional integral for SFJF and derivative for Jacobi polynomial, to solve a class of time‐fractional partial differential equations with variable coefficients. In this algorithm, the approximate solution is expanded by means of both SFJFs for temporal discretization and Jacobi polynomials for spatial discretization. The proposed tau scheme, both in temporal and spatial discretizations, successfully reduced such problem into a system of algebraic equations, which is far easier to be solved. Numerical results are provided to demonstrate the high accuracy and superiority of the proposed algorithm over existing ones. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
本文利用变分迭代法求解比例延迟微分方程。通过解一些比例延迟微分方程,说明变分迭代法能很好地得到比例延迟微分方程的解。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号