首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
As‐deposited Ag(10 nm)/glass films exhibited agglomerated nanocrystals with seemingly thick boundaries. Introduction of a TaNx layer below the Ag films resulted in dense and smooth structures, with a resistance at least three times lower than that of Ag/glass. For TaNx(10 nm)/Ag(10 nm)/TaNx(10 nm)/glass multilayer films, Auger electron spectroscopy results indicate that TaNx acts as an effective barrier restraining the diffusion of Ag. After annealing (up to 573 K), no outward diffusion of Ag through either TaNx layer was seen. However, partial oxidation of the outermost TaNx layer to form Ta2O5 was observed. The films showed promising optical properties with 73% transmittance in the visible region and ~15% average transmittance in the near‐infrared region. The optical data obtained here was in good agreement with simulated predictions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
The effect of substrate temperature and N2/Ar flow ratio on the stoichiometry, structure and hardness of TaNx coatings prepared on (111) Si substrates by DC reactive sputtering was investigated. For the structural, chemical and morphological analysis, X‐ray diffraction (XRD), Auger electron scanning and atomic force microscopy were respectively used. Hardness values of thin films were determined using the work of indentation model from nanoindentation measurements. TaN stoichiometric coatings were obtained for samples deposited at room temperature. The stoichiometric TaN phase was not obtained by increasing the temperature up to 773 K, even when increasing the N2/Ar flow ratio. Even when a saturation in nitrogen content was achieved, nitrogen vacancies are still present in those samples. For coatings prepared at 773 K and low N2/Ar flow ratio, a phase mixture between TaNx and cubic α‐Ta was observed, while a cubic structure δ‐TaN was formed by increasing the N2/Ar flow ratio. A maximum in hardness and (38 GPa) was obtained for the sample deposited at 773 K and a N2/Ar flow ratio of 0.2, which presented a δ‐TaN cubic crystalline structure and a roughness value of 1.6 nm. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
The interaction of hydrogen with reduced ceria (CeO2?x) powders and CeO2?x(111) thin films was studied using several characterization techniques including TEM, XRD, LEED, XPS, RPES, EELS, ESR, and TDS. The results clearly indicate that both in reduced ceria powders as well as in reduced single crystal ceria films hydrogen may form hydroxyls at the surface and hydride species below the surface. The formation of hydrides is clearly linked to the presence of oxygen vacancies and is accompanied by the transfer of an electron from a Ce3+ species to hydrogen, which results in the formation of Ce4+, and thus in oxidation of ceria.  相似文献   

4.
Amorphous carbon silicon nitride thin films were grown on (100) oriented silicon substrates by pulsed laser deposition (PLD) assisted by an RF nitrogen plasma source. Up to about 30 at. % nitrogen and up to 20 at. % silicon were found in the hard amorphous thin films by XPS in dependence on the composition of the mixed graphite / Si3N4 PLD target. The universal nanohardness was measured to be at maximum load force of 0.1 mN up to 23 GPa for thin CSixNy films with reference value of 14 GPa for single crystalline silicon. X-ray photoelectron spectroscopy (XPS) of CSixNy film surfaces showed a clear correlation of binding energy and intensity of fitted features of N 1s, C 1s, and Si 2p peaks to the composition of the graphite / Si3N4 target and to nitrogen flow through the plasma source, indicating soft changes of binding structure of the thin films due to variation of PLD parameters. Auger electron spectroscopy (AES) of Si KL23L23;1D Auger transition gave a detailed view of bonding structure of Si in the CSixNy films. The intensity of π* and σ* resonances at the carbon K-edge X-ray absorption near-edge structure (XANES) of the CSixNy films measured at BESSY I corresponded to the nanohardness of the CSixNy films, thus giving insight into chemical binding structure of superhard amorphous materials.  相似文献   

5.
This paper presents a systematic X‐ray photoelectron spectroscopy (XPS)study of the Ni silicides Ni3Si, Ni31Si12, Ni2Si, NiSi and NiSi2 produced by annealing of sputtered thin films. The in situ XPS study focuses on both the core level peaks and Auger peaks. The peak positions, shapes, satellites as well as Auger parameters are compared for different silicides. The factors that influence the Ni core level peak shifts are discussed. The Ni 2p3/2 peak shape and satellites are correlated with the valence band structure. The effect of argon ion etching on surface composition and chemical states is also investigated. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
It is an attractive and challenging topic to endow non‐noble metal catalysts with high efficiency via a nitrogen‐doping approach. In this study, a nitrogen‐doped carbon catalyst with high nitrogen content encapsulating cobalt NPs (CoOx@N‐C(g)) was synthesized, and characterized in detail by XRD, HRTEM, N2‐physisorption, ICP, CO2‐TPD, and XPS techniques. g‐C3N4 nanosheets act as nitrogen source and self‐sacrificing templates, giving rise to an ultrahigh nitrogen content of 14.0 %, much higher than those using bulk g‐C3N4 (4.4 %) via the same synthesis procedures. As a result, CoOx@N‐C(g) exhibited the highest performance in the oxidative esterification of biomass‐derived platform furfural to methylfuroate under base‐free conditions, achieving 95.0 % conversion and 97.1 % selectivity toward methylfuroate under 0.5 MPa O2 at 100 °C for 6 h, far exceeding those of other cobalt‐based catalysts. The high efficiency of CoOx@N‐C(g) was closely related to its high ratio of pyridinic nitrogen species that may act as Lewis basic sites as well as its capacity for the activation of dioxygen to superoxide radical O2.?.  相似文献   

7.
In this work, aluminium (Alclad 2024‐T3) substrates were cleaned by an r.f. (13.56 MHz) plasma, using argon (Ar), oxygen (O2) and a mixture of O2/Ar (50:50) gases. The effectiveness of plasma cleaning was checked in situ using X‐ray photoelectron spectroscopy (XPS) and ex situ using water contact angle measurements. XPS O/Al surface atomic ratios are in excellent agreement with those of the crystalline boehmite and the pseudoboehmite. Oxygen O 1s peak‐fitting was used to quantify the proportion of hydroxyl ions and the functional composition on the aluminium surface: the surface cleaned with O2 plasma contains 50% of aluminium hydroxides, the ones cleaned with Ar plasma and with Ar/O2 plasma contain, respectively, 25 and 37% hydroxyl ions. The binding energy separation between Al 2p and O 1s is characteristic of AlO(OH). Thin SiOx films were subsequently deposited from a mixture of hexamethyldisiloxane (HMDSO) and oxygen. In the absence of oxygen, a hydrophobic (Θ≥ 100° ) film characteristic of polydimethylsiloxane (PDMS) is formed: polysiloxane‐like thinner films (SiOx) are obtained with the introduction of oxygen. XPS and contact angle measurements confirmed both the composition and the structure of these films. More importantly, contact angle measurements using different liquids and interpreted with the van Oss‐Good‐Chaudhury theory allowed determination of the surface free energy of the deposited films: the calculated values of surface tension of the film formed from HMDSO/O2: (50/50) are in excellent agreement with those of reference silica‐based materials such as a silicon wafer and cleaned glass. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
The crystalline phase and composition of sol-gel-derived lead zirconate titanate (PbZr x Ti1 – x O3, PZT) thin films were determined by an X-ray photoelectron spectroscopic (XPS) data processing technique. As a result, it was proved that existence of the surface layer with several tens nm in thickness, of which the crystalline phase and composition were different from those of the inside of the thin films, was found. The newly developed XPS analytical technique is much applicable for the characterization of PZT thin film surface.  相似文献   

9.
The bamboo‐shaped nitrogen‐doped carbon nanotubes (CNx) with different nitrogen content were synthesized using Fe‐containing SBA‐15 molecular sieve as catalyst with thermal decomposition. The CNx nanotubes prepared were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X‐ray diffraction (XRD) and Raman spectroscopy. The results suggest that there are a larger amount of defective sites on CNx nanotubes surfaces due to the nitrogen doping and CNx nanotube with higher nitrogen content possesses lower graphitic ordering in the framework. Furthermore the effects of nitrogen content on the electrochemistry of CNx modified electrodes were investigated by cyclic voltammetry (CV). CNx modified electrodes exhibit better electrocatalytic activities to the oxidation of hydroquinone. Moreover CNx with lower nitrogen content is in favor of the electron transfer between dihydroxybenzene and electrode surface, while CNx with higher nitrogen content possesses high surface adsorptive ability. CNx modified electrodes can be applied to determine dihydroxybenzene isomers directly and simultaneously by linear sweep voltammetry technique without previous separation.  相似文献   

10.
Photocatalytically active Pb-doped TiO2 thin films were prepared on a soda-lime glass substrate by sol-gel dip-coating technique using TiO2 sols containing lead(II) nitrate. The thin films were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), UV-VIS spectroscopy and X-ray diffraction (XRD). A shift of the UV-VIS absorption towards longer wavelengths was observed, which indicated a decrease in the band-gap of TiO2 upon Pb doping. XRD results showed both pure and Pb-doped TiO2 thin films were polycrystalline, anatase type, and oriented predominantly to the (101) plane. A slight shift in the d-spacing for the Pb-doped film indicated the incorporation of Pb into the TiO2 lattice to form Pb x Ti1–x O2 solid solution. AFM results showed Pb-doped TiO2 thin films were composed of larger TiO2 particles and had rougher surface, compared with un-doped TiO2 thin films. XPS results showed that except for the enrichment of Pb near the surface, Pb exists in the forms of Pb x Ti1–x O2 and PbO. Dimethyl-2,2-dichlorovinyl phosphate (DDVP) was efficiently degraded in the presence of the Pb-doped TiO2 thin films by exposing the insecticide solution to sunlight. The mechanism of photocatalytic activity enhancement of the Pb-doped TiO2 thin films was discussed.  相似文献   

11.
Amorphous non‐hydrogenated germanium carbide (a‐Ge1?xCx) films have been deposited using magnetron co‐sputtering technique by varying the sputtering power of germanium target (PGe). The effects of PGe on composition and structure of the a‐Ge1?xCx films have been analyzed. The FTIR spectrum shows that the C–Ge bonds were formed in the a‐Ge1?xCx films according to the absorption peak at ~610 cm?1. The Raman results indicate that the amorphous films also contain both Ge and C clusters. The XPS results reveal that the carbon concentration decreased as PGe increased from 40 to 160 W. The fraction of sp3 C–C bonds remains almost constant when increasing PGe from 40 to 160 W. The sp2 C–C content of a‐Ge1?xCx film decreases gradually to 35.9% with PGe up to 160 W. Nevertheless, sp3 C–Ge sites rose with increasing PGe. Furthermore, the hardness and the refractive index gradually increased with increasing PGe. The excellent optical transmission of annealed a‐Ge1–xCx double‐layer coating at 400 °C suggests that a‐Ge1?xCx films can be used as an effective anti‐reflection coating for the ZnS IR window in the wavelength region of 8–12 µm, and can endure higher temperature than hydrogenated amorphous germanium carbide do. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Defects were created on the surface of highly oriented pyrolytic graphite (HOPG) by sputtering with an Ar+ ion beam, then characterized using X‐ray photoelectron spectroscopy (XPS) and time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) at 500°C. In the XPS C1s spectrum of the sputtered HOPG, a sp3 carbon peak appeared at 285.3 eV, representing surface defects. In addition, 2 sets of peaks, the Cx and CxH ion series (where x = 1, 2, 3...), were identified in the ToF‐SIMS negative ion spectrum. In the positive ion spectrum, a series of CxH2+• ions indicating defects was observed. Annealing of the sputtered samples under Ar was conducted at different temperatures. The XPS and ToF‐SIMS spectra of the sputtered HOPG after 800°C annealing were observed to be similar to the spectra of the fresh HOPG. The sp3 carbon peak had disappeared from the C1s spectrum, and the normalized intensities of the CxH and CxH2+• ions had decreased. These results indicate that defects created by sputtering on the surface of HOPG can be repaired by high‐temperature annealing.  相似文献   

13.
Photocatalytic multilayer nanocomposite films composed of anatase TiO2 nanoparticles and lignosulfonates (LS) were fabricated on quartz slides by the layer‐by‐layer (LBL) self‐assembly technique. X‐ray photoelectron spectroscopy (XPS), UV‐vis spectroscopy and atomic force microscopy (AFM) were used to characterize the TiO2/LS multilayer nanocomposite films. Moreover, the photocatalytic properties (decomposition of methyl orange and bacteria) of multilayer nanocomposite films were investigated. XPS results indicated that the intensities of titanium and sulfur peaks increased with the LBL deposition process. A linear increase in absorbance at 280 nm was found by UV‐Vis spectroscopy, suggesting that stepwise multilayer growth occurs on the substrate and this deposition process is highly reproducible. AFM images showed that quartz slide was completely covered by TiO2 nanoparticles when a 10‐bilayer multilayer film was formed. The decomposition efficiency of methyl orange by TiO2/LS multilayer films under the same UV irradiation time increased linearly with the number of TiO2 layers, and the results of decomposition of bacteria under UV irradiation showed that TiO2/LS multilayer nanocomposite films exhibited excellent decomposition activity of bacteria (Escherichia coil).  相似文献   

14.
The atomic layer deposition (ALD) of iron sulfide (FeSx ) is reported for the first time. The deposition process employs bis(N ,N′ ‐di‐tert‐butylacetamidinato)iron(II) and H2S as the reactants and produces fairly pure, smooth, and well‐crystallized FeSx thin films following an ideal self‐limiting ALD growth behavior. The FeSx films can be uniformly and conformally deposited into deep narrow trenches with aspect ratios as high as 10:1, which highlights the broad applicability of this ALD process for engineering the surface of complex 3D nanostructures in general. Highly uniform nanoscale FeSx coatings on porous γ‐Al2O3 powder were also prepared. This compound shows excellent catalytic activity and selectivity in the hydrogenation of azo compounds under mild reaction conditions, demonstrating the promise of ALD FeSx as a catalyst for organic reactions.  相似文献   

15.
The effect of manganese on the dispersion, reduction behavior and active states of surface of supported copper oxide catalysts have been investigated by XRD, temperature‐programmed reduction and XPS. The activity of methanol synthesis from CO2/H2 was also investigated. The catalytic activity over CuO‐MnOx/γ‐Al2O3 catalyst for CO2 hydrogenation is higher than that of CuO/γ‐Al2O3. The adding of manganese is beneficial in enhancing the dispersion of the supported copper oxide and make the TPR peak of the CuO‐MnKx/γ‐Al2O3 catalyst different from the individual supported copper and manganese oxide catalysts, which indicates that there exists strong interaction between the copper and manganese oxide. For the CuO/γ‐Al2O3 catalyst there are two reducible copper oxide species; α and β peaks are attributed to the reduction of highly dispersed copper oxide species and bulk CuO species, respectively. For the CuO‐MnOx/γ‐Al2O3 catalyst, four reduction peaks are observed, α peak is attributed to the dispersed copper oxide species; β peak is ascribed to the bulk CuO; γ peak is attributed to the reduction of high dispersed CuO interacting with manganese; δ peak may be the reduction of the manganese oxide interacting with copper oxide. XPS results show that Cu+ mostly existed on the working surface of the Cu‐Mn/γ‐Al2O3 catalysts. The activity was promoted by Cu with positive charge which was formed by means of long path exchange function between Cu? O? Mn. These results indicate that there is synergistic interaction between the copper and manganese oxide, which is responsible for the high activity of CO2 hydrogenation.  相似文献   

16.
KSbWO6 was prepared by sol‐gel method. N‐doped KSbWO6 (KSbWO6–xNx) was obtained by heating KSbWO6 and urea at 400 °C. Both the compounds are characterized by powder X‐ray diffraction (XRD), TEM, SEM‐EDS, X‐ray photo electronic spectroscopy (XPS), and UV/Vis diffuse reflectance spectroscopy (UV‐DRS). A shift in the peak positions of powder XRD and XPS spectra was observed. The band gap energy (Eg) of KSbWO6 and N‐doped KSbWO6 was obtained from their diffused reflectance spectra.Eg was reduced from 3.17 eV to 2.56 eV upon nitrogen doping in KSbWO6. The reduction of the Eg is attributed to the lifting of valence band of N‐doped KSbWO6, due to the mixing of O 2p states with N 2p states. The photocatalytic activity of both the samples was studied by degradation of methylene blue (MB). The nitrogen doped KSbWO6 shows higher photocatalytic activity compared to that of KSbWO6.  相似文献   

17.
Copper‐doped iron sulfide (CuxFe1?xS, x = 0.010–0.180) thin films were deposited using a single‐source precursor, Cu(LH)2Cl2 (LH = monoacetylferrocene thiosemicarbazone), by aerosol‐assisted chemical vapor deposition technique. The Cu‐doped FeS thin films were deposited at different substrate temperatures, i.e. 250, 300, 350, 400 and 450 °C. The deposited thin films were characterized by X‐ray diffraction (XRD) patterns, Raman spectra, scanning electron microscopy, energy dispersive X‐ray analysis (EDX) and atomic force microscopy. XRD studies of Cu‐doped FeS thin films at all the temperatures revealed formation of single‐phase FeS structure. With increasing substrate temperature from 250 to 450 °C, there was change in morphology from wafer‐like to cylindrical plate‐like. EDX analysis showed that the doping percentage of copper increased as the substrate temperature increased from 250 to 450 °C. Raman data supports the doping of copper in FeS films. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, the influence of nickel incorporation on the mechanical properties and the in vitro bioactivity of hydrogenated carbon thin films were investigated in detail. Amorphous hydrogenated carbon (a‐C:H) and nickel‐incorporated hydrogenated carbon (Ni/a‐C:H) thin films were deposited onto the Si substrates by using reactive biased target ion beam deposition technique. The films' chemical composition, surface roughness, microstructure and mechanical properties were investigated by using XPS, AFM, TEM, nanoindentation and nanoscratch test, respectively. XPS results have shown that the film surface is mainly composed of nickel, nickel oxide and nickel hydroxide, whereas at the core is nickel carbide (Ni3C) only. The presence of Ni3C has increased the sp2 carbon content and as a result, the mechanical hardness of the film was decreased. However, Ni/a‐C:H films shows very low friction coefficient with higher scratch‐resistance behavior than that of pure a‐C:H film. In addition, in vitro bioactivity study has confirmed that it is possible to grow dense bone‐like apatite layer on Ni/a‐C:H films. Thus, the results have indicated the suitability of the films for bone‐related implant coating applications. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Directed self‐assembly of block copolymers (BCPs) is a promising candidate for next generation nanolithography. In order to validate a given pattern, the lateral and in‐depth distributions of the blocks should be well characterized; for the latter, time‐of‐flight (ToF) SIMS is a particularly well‐adapted technique. Here, we use an ION‐TOF ToF‐SIMS V in negative mode to provide qualitative information on the in‐depth organization of polystyrene‐b‐polymethylmethacrylate (PS‐b‐PMMA) BCP thin films. Using low‐energy Cs+ sputtering and Bi3+ as the analysis ions, PS and PMMA homopolymer films are first analyzed in order to identify the characteristic secondary ions for each block. PS‐b‐PMMA BCPs are then characterized showing that self‐assembled nanodomains are clearly observed after annealing. We also demonstrate that the ToF‐SIMS technique is able to distinguish between the different morphologies of BCP investigated in this work (lamellae, spheres or cylinders). ToF‐SIMS characterization on BCP is in good agreement with XPS analysis performed on the same samples. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
A series of thin films of amorphous hydrogenated silicon carbide (a-SiCH) produced by RF plasma decomposition of propane and silane has been studied by electron energy-loss spectroscopy (EELS) and extended energy-loss fine structure (EXELFS) studies. The composition of the films has been determined by EELS and the nearest neighbour spacings have been determined by EXELFS. These results, along with the energy of the plasmon loss peaks, have been compared with the deposition conditions for each film. The results show that for a large gas ratio (C3H8/(C3H8+SiH4)) the films have a high proportion of carbon and are similar to a-CH in structure, whereas those films prepared with Y = 0.4 or 0.5 have nearest neighbour spacings consistent with those for tetrahedrally bonded carbon. The films prepared with lowest Y have nearest neighbour spacings similar to those for amorphous silicon carbide. The results for a-SiCH have been compared with the results of EELS and EXELFS of CVD diamond films, amorphous carbon and amorphous silicon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号