首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adsorption processes of thiophene and benzothiophene on pristine carbon nanotubes (CNTs), and on CNTs doped with Si or Ge, have been modeled with Density Functional. This is the first study on the chemical reactivity of such doped tubes. The calculated data suggest that the presence of silicon or germanium atoms in CNTs increases their reactivity toward thiophene, and benzothiophene. The adsorption of these species on pristine CNTs seems very unlikely to occur, while the addition products involving doped CNTs were found to be very stable, with respect to the isolated reactants, in terms of Gibbs free energy. Several of these adsorption processes were found to be significantly exergonic (ΔG < 0) in non-polar liquid phase. The results reported in this work suggest that Si and Ge defects on CNTs increase their reactivity toward unsaturated species, and could make them useful in the removal processes of aromatic sulfur compounds from oil-hydrocarbons. However, according to our results, CNTs doped with Si atoms are expected to be more efficient as aromatic sulfur compounds scavengers than those doped with Ge. These results also suggest that the presence of silicon and germanium atoms in the CNTs structures enhances their reactivity toward nucleophilic molecules, compared to pristine carbon nanotubes.  相似文献   

2.
PBEPBE‐D3 calculations were performed to investigate how platinum (Pt) interacts with the internal and external surfaces of single‐walled pristine, Si‐, Ge‐, and Sn‐doped (6,6) carbon nanotubes (CNTs). Our calculations showed that atomic Pt demonstrates stronger binding strength on the external surfaces than the internal surface adsorption for the same type of nanotube. In cases of external surface adsorptions, Si‐, Ge‐, and Sn‐doped CNTs show comparable binding energies for Pt, at least 1.40 eV larger than pristine CNT. This enhancement can be rationalized by the strong covalent interactions between Pt and X? C (X = Si, Ge, and Sn) pairs based on structural and projected density of states analysis. In terms of internal surface adsorptions, Ge and Sn doping could significantly enhance the binding of Pt. Pt atom shows much more delocalized and bonding states inside Ge‐ and Sn‐doped CNTs, indicating multiple‐site interaction pattern when atomic Pt is confined inside the nanotubes. However, the internal surface of Si‐doped CNT presents limited enhancement in Pt adsorption with respect to that of pristine CNT because of their similar binding geometries. © 2016 Wiley Periodicals, Inc.  相似文献   

3.
4.
Potential applicability of undoped, B‐, and N‐doped carbon nanotubes (CNTs) for elaboration of the working materials of gas sensors of hydrogen halide molecules HX (X = F, Cl, Br) is analyzed in computational studies of molecular adsorption on the CNTs surfaces. Density Functional Theory (DFT)‐based geometry‐optimized calculations of the electronic structure of undoped, B‐, and N‐doped CNTs of (3,3) and (5,5) chiralities with adsorbed HX (X = F, Cl, Br) molecules are performed within molecular cluster approach. Relaxed geometries, binding energies between the adsorbates and the nanotubes, charge states of the adsorbates and the electronic wave function contours are calculated and analyzed in the context of gas sensing applications. Obtained results are supplemented by calculations of adsorption of hydrogen halides on B(N)‐doped graphene sheets which are considered as model approximation for large‐diameter CNTs. It is found that the B‐doped CNTs are perspective for elaboration of sensing materials for detection of HCl and HBr molecules. The undoped and the N‐doped CNTs are predicted to be less suitable materials for detection of hydrogen halide gases HX (X = F, Cl, Br). © 2015 Wiley Periodicals, Inc.  相似文献   

5.
A facile and scalable approach for fabricating structural defect‐rich nitrogen‐doped carbon nanotubes (MCSA‐CNTs) through explosive decomposition of melamine–cyanuric acid supramolecular assembly is presented. In comparison to pristine carbon nanotubes, MCSA‐CNT exhibits significantly enhanced catalytic performance in oxidant‐ and steam‐free direct dehydrogenation of ethylbenzene, demonstrating the potential for metal‐free clean and energy‐saving styrene production. This finding also opens a new horizon for preparing highly‐efficient carbocatalysts rich in structural defect sites for diverse transformations.  相似文献   

6.
The titanium/silicon mono‐ and co‐doped amorphous carbon films were deposited by mid‐frequency magnetron sputtering Ti target, Si target, and Ti80S20 alloy target, respectively. The effects of doped elements on the composition, surface morphology, microstructure, and mechanical and tribological properties of the films were investigated. The results reveal that the ratio of sp3 and sp2 carbon bonds of the films is regulated between 0.28 and 0.62 by a combination of Ti and Si dopant. The addition of small amounts of silicon leads to an increase in sp3 bonds and disorder degree of the sp2 carbon. The co‐doped film exhibits significantly superior friction performance than the mono‐doped films. The ultra‐low friction (μ < 0.01) was achieved under a load of 2 N in ambient air with 40% RH. By comparing to the mono‐and co‐doped films, it is thought that the sp3/sp2 ratio of the films may play a key role for the superlow friction. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
The dispersion effect of carbon nanotubes (CNTs) in aqueous solutions by a silicon surfactant (ethoxy modified trisiloxane, named Ag-64) was investigated in detail using experimental method and molecular dynamics simulation. The Si–O–Si chain of silicon surfactant was flexible due to long Si–C bond and it could easily wrap onto the surface of CNTs through hydrophobic and other intermolecular interactions. The hydrophilic part of PEO provided the CNTs dispersed in the aqueous solution and prevented CNTs from aggregating in water through steric stabilization. It was found that Ag-64 could disperse CNTs with different diameters and it was an effective dispersing agent. The results of molecular dynamics simulation indicated that Ag-64 molecules could wrap onto the surface of CNTs leading to steric stabilization so that it could well disperse CNTs, and Van der Waals attraction was the dominating force of Ag-64 adsorbing onto CNTs. Our study may provide experimental and theoretical basis for using silicon surfactants to disperse CNTs, which can open the avenue of new applications for silicon surfactants.  相似文献   

8.
A three‐dimensional (3D) nitrogen‐doped reduced graphene oxide (rGO)–carbon nanotubes (CNTs) architecture supporting ultrafine Pd nanoparticles is prepared and used as a highly efficient electrocatalyst. Graphene oxide (GO) is first used as a surfactant to disperse pristine CNTs for electrochemical preparation of 3D rGO@CNTs, and subsequently one‐step electrodeposition of the stable colloidal GO–CNTs solution containing Na2PdCl4 affords rGO@CNTs‐supported Pd nanoparticles. Further thermal treatment of the Pd/rGO@CNTs hybrid with ammonia achieves not only in situ nitrogen‐doping of the rGO@CNTs support but also extraordinary size decrease of the Pd nanoparticles to below 2.0 nm. The resulting catalyst is characterized by scanning and transmission electron microscopy, X‐ray diffraction, Raman spectroscopy, and X‐ray photoelectron spectroscopy. Catalyst performance for the methanol oxidation reaction is tested through cyclic voltammetry and chronoamperometry techniques, which shows exceedingly high mass activity and superior durability.  相似文献   

9.
We report a first‐principles investigation of Li adsorption and diffusion in single‐walled Si nanotubes (SWSiNTs) of interest to Li‐ion battery anodes. We calculate Li insertion characteristics in SWSiNTs and compare them with the respective ones in carbon nanotubes (CNTs) and other silicon nanostructures. From our calculations, SWSiNTs show higher reactivity toward the adsorption of Li adatoms than CNTs and Si nanoclusters. Considering the importance of Li kinetics, we demonstrate that the interior of SWSiNTs may serve as a fast Li diffusion channel. The important advantage of SWSiNTs over their carbon analogues is a sevenfold reduction in the energy barrier for the penetration of the Li atoms into the nanotube interior through the sidewalls. This prepossesses easier Li diffusion inside the tube and subsequent utilization of the interior sites, which enhances Li storage capacity of the system. The improvements in both Li uptake and Li mobility over their analogues support the great potential of SWSiNTs as Li‐ion battery anodes.  相似文献   

10.
Structural Chemistry - In this work, the interactions between simple carbon nanotubes (CNTs) and doped carbon nanotubes (DCNTs; with sulfur, boron, aluminum, silicon, phosphorus, or nitrogen) as...  相似文献   

11.
Carbon nanotubes doped with N (NCNTs) enable 1.5 times faster electron-transfer kinetics for the oxidation of NO compared to pristine carbon nanotubes (CNTs), which may be due to the low adsorption energy for a NO on pyridinic NCNT(5,5) allowing NO to lose electrons readily and facilitate the following oxidation to nitrate.  相似文献   

12.
以十六烷基三甲基溴化铵(CTAB)为结构导向剂, 正硅酸乙酯(TEOS)为硅源, 通过添加碳纳米管(CNTs), 制备介孔二氧化硅包覆碳纳米管网状结构的复合材料(C/Si). X 射线衍射(XRD)和透射电子显微镜(TEM)显示, 介孔二氧化硅的孔道结构高度有序, CNTs 均匀分散于二氧化硅刚性骨架中. 以其为载体微波负载制备了Pt-C/Si-x 纳米粒子催化剂,研究了催化剂在硫酸和甲醇溶液中电催化性能, 结果表明, 具有较高导电性能的复合材料保持了二氧化硅的均匀的孔道结构有利于电解液存储和质子传输, 使得该催化剂显示了良好的电催化活性. 其中碳纳米管添加含量为40 mg 时,催化剂在H2SO4 电解液中的电化学活性面积高达120.9 m2·g-1, 远大于Pt/CNTs 的电化学活性面积, 对甲醇的催化峰电流也达80.3 mA·cm-2. 预示其作为直接甲醇燃料电池催化剂载体具有良好的应用前景.  相似文献   

13.
In this study, we have investigated delivery of cisplatin as the anticancer drug molecules in different carbon nanotubes (CNTs) in the gas phase using molecular dynamics simulation. We examined the shape and composition of the releasing agent by using the different nanowires and nanoclusters. We also investigated the doping effect on the drug delivery process using N-, Si, B-, and Fe-doped CNTs. Different thermodynamics, structural, and dynamical properties have been studied by using the pure and different doped CNTs in this study. Our results show that the doping of the CNT has significant effect on the rate of the drug releasing process regardless of the composition of the releasing agent. © 2019 Wiley Periodicals, Inc.  相似文献   

14.
Differential wetting of pristine and ozonized carbon nanotubes has been studied using solvents like acetonitrile and dichloromethane in comparison to the well-known wetting behavior of water. Based on their unique structural and physical properties, functionalized CNT substrates have been used due to the fact that independent variation in molecular as well as electronic properties could be controlled by understanding the wetting of these liquids on carbon nanotubes (CNTs), both pristine as well as ozone treated. The sensitivity of the wetting behavior with respect to molecular interactions has been investigated using contact angle measurements while Raman and XPS studies unravel the differential wetting behavior. Charge-transfer between adsorbed molecules and CNTs has been identified to play a crucial role in determining the interfacial energies of these two liquids, especially in the case of acetonitrile. Ozone treatment has been observed to affect the surface properties of pristine CNTs along with a concomitant change in the wetting dynamics.  相似文献   

15.
16.
Chunhui Xiao 《Talanta》2010,80(5):1719-9434
Polymerized ionic liquid-wrapped carbon nanotubes (PIL-CNTs) were firstly designed for direct electrochemistry and biosensing of redox proteins. The CNTs were coated successfully with polymerized ionic liquid (PIL) layer, as verified by transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and Fourier transform infrared (FT-IR) spectroscopy. The PIL-CNTs were dispersed better in water and showed superior electrocatalysis toward O2 and H2O2 comparing to pristine CNTs and the mixture of IL monomer and CNTs. With glucose oxidase (GOD) as a protein model, the direct electrochemistry of the redox protein was investigated on the PIL-CNTs modified glassy carbon (GC) electrode and excellent direct electrochemical performance of GOD molecules was observed. The proposed biosensor (GOD/PIL-CNTs/GC electrode) displayed good analytical performance for glucose with linear response up to 6 mM, response sensitivity of 0.853 μA mM−1, good stability and selectivity.  相似文献   

17.
Nitrogen‐doped carbon nanotubes (NCNTs) have been considered as a promising electrocatalyst for carbon‐dioxide‐reduction reactions, but two fundamental chemistry questions remain obscure: 1) What are the active centers with respect to various defect species and 2) what is the role of defect density on the selectivity of NCNTs? The aim of this work is to address these questions. The catalytic activity of NCNTs depends on the structural nature of nitrogen in CNTs and defect density. Comparing with pristine CNTs, the presence of graphitic and pyridinic nitrogen significantly decreases the overpotential (ca. ?0.18 V) and increases the selectivity (ca. 80 %) towards the formation of CO. The experimental results are in congruent with DFT calculations, which show that pyridinic defects retain a lone pair of electrons that are capable of binding CO2. However, for graphitic‐like nitrogen, electrons are located in the π* antibonding orbital, making them less accessible for CO2 binding.  相似文献   

18.
Carbon nanotubes (CNTs) were non‐covalently functionalized with chitosan (Chit) and then employed as the support for PtRu nanoparticles. The functionalization was carried out at room temperature without the use of corrosive acids, thereby preserving the integrity and the electronic conductivity of the CNTs. Transmission electron microscopy reveals that PtRu nanoparticles were highly dispersed on the surface of Chit‐functionalized CNTs (CNT‐Chit) with small particle‐size. Cyclic voltammetry studies indicated that the PtRu nanoparticle/CNT‐Chit nanohybrids have a higher electrochemical surface area, electrocatalytic performance, and stability towards methanol oxidation compared to PtRu nanoparticles supported on the pristine CNTs.  相似文献   

19.
Nitrogen‐doped carbon nanotubes (NCNTs) have been considered as a promising electrocatalyst for carbon‐dioxide‐reduction reactions, but two fundamental chemistry questions remain obscure: 1) What are the active centers with respect to various defect species and 2) what is the role of defect density on the selectivity of NCNTs? The aim of this work is to address these questions. The catalytic activity of NCNTs depends on the structural nature of nitrogen in CNTs and defect density. Comparing with pristine CNTs, the presence of graphitic and pyridinic nitrogen significantly decreases the overpotential (ca. −0.18 V) and increases the selectivity (ca. 80 %) towards the formation of CO. The experimental results are in congruent with DFT calculations, which show that pyridinic defects retain a lone pair of electrons that are capable of binding CO2. However, for graphitic‐like nitrogen, electrons are located in the π* antibonding orbital, making them less accessible for CO2 binding.  相似文献   

20.
The ability of the Si–H group as hydrogen bond (HB) donor has been studied theoretically. Most of the selected molecules include the Si–H group in a polar environment that could produce an electron deficiency on the hydrogen atom. In addition, analogous derivatives where the silicon atom has been replaced by a carbon atom have been considered. In all cases, ammonia has been used as HB acceptor. The calculations have been carried out at the MP2/6‐311++G** computational level. The electron density of the complexes has been characterized within the atoms in molecules (AIM) framework. A search in the Cambridge Structural Database (CSD) has been carried out to verify the existence of this kind of interactions in solid phase. The results of the theoretical study on these HB complexes between ammonia and the silicon derivatives provides long HB distances (2.4 to 3.2 Å) and small interaction energies (?2.4 to ?0.2 kcal/mol). In all cases, the HBs of the corresponding carbon analogs show shorter interaction distances corresponding to stronger complexes. The CSD search provides a small number of short interactions between Si and other heavy atoms in agreement with the small stabilizing energy of the Si–H?N HB and the lack of SiH bond in polar environment within the database. © 2002 John Wiley & Sons, Inc. Int J Quantum Chem, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号