首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The polarized Raman spectra of the oriented single crystals of L ‐ and DL ‐alanine, α‐, β‐ and γ‐polymorphs of glycine have been studied at 3–300 K. Regularly spaced band packets have been observed in the spectral range of 2500–3000 cm−1, with intensity decreasing noticeably on heating. These band packets were interpreted as the manifestations of the existence of N H self‐trapped states in these systems at low temperatures. The analysis of the polarized spectra has shown that the self‐trapping is observed exclusively for the NH stretching vibration of the amino groups, which is related to the NH···O hydrogen bonds along the head‐to‐tail chains of zwitterions in the crystal structures. The wavenumber of this NH stretching vibration, however, was proposed to depend not solely on the length of this NH···O hydrogen bond, but also on the lengths of all the other NH···O hydrogen bonds formed by the NH3+ and the COO groups in the structure linking the head‐to‐tail chains with each other. The arguments in favor of the hypothesis that the self‐trapping in these systems can be mediated by zero‐point quantum motions, and not by lattice phonons, are considered. The unusually low wavenumber (2500 cm−1) observed for the NH stretching vibration and indicating at the formation of a very strong NH···O bond is interpreted based on considering the effect of the crystalline environment on the formation and properties of the NH···O bonds in the head‐to‐tail chains of amino acid zwitterions. The results are interesting for understanding the factors determining the dynamics and structural instability of crystalline amino acids and also for biophysical chemistry, as the hydrogen bonded chains formed by amino acid zwitterions in the crystals can mimic the peptide chains. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
2‐(Pyrrol‐2‐ylmethylene)‐1,3‐indandione ( 4 ) and 2‐(pyrrol‐2‐ylmethylene)‐3‐dicyanomethylidene‐1‐indanone ( 5 ) were synthesized. Multinuclear and 2D‐NMR, IR, UV spectroscopic investigations as well as quantum chemical calculations showed the presence of strong hydrogen bonding in these molecules. For both molecules, the presence of two conformers, with and without H‐bond, was experimentally detected in the basic solvents (DMSO, acetone, pyridine) and the solvate complexes were theoretically calculated. Specific behavior of the intramolecular H‐bonded complexes different from that of the intermolecular H‐complexes is discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
The characteristics of pre‐edge peaks in K‐edge x‐ray absorption near edge structure (XANES) spectra of 3d transition metals were reviewed from viewpoints of the selection rule, coordination number, number of d‐electrons, and symmetry of the coordination sphere. The contribution of the electric dipole and quadrupole transition to the peaks was discussed on the basis of the group theory, polarized spectra, and theoretical calculations. The pre‐edge peak intensity for Td symmetry is larger than those for Oh symmetry for all 3d elements. The intense pre‐edge peak for tetrahedral species of 3d transition metals is not due to 1s–3d transition, but transition to the p component in d–p hybridized orbital. The mixing of metal 4p orbitals with the 3d orbitals depends strongly on the coordination symmetry, and the possibility is predictable by group theory. The transition of 1s electron to d orbitals is electric quadrupole component in any of the symmetries. The d–p hybridization does not occur with regular octahedral symmetry, and the weak pre‐edge peak consists of 1s–3d electric quadrupole transition. The pre‐edge peak intensity for a compound with a tetrahedral center changes as a function of the number of 3d electrons regardless of the kind of element; it is maximized at d0 and gradually decreases to zero at d10. The features of pre‐edge peaks in K‐edge XANES spectra for 4d elements and the L1‐edge for 5d elements are analogous with those for 3d elements, but the pre‐edge peak is broadened due to the wide natural width of the core level. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
5.
We report on the infrared (IR) and Raman studies of the three isostructural quasi‐one‐dimensional cation radical salts of 3,4‐dimethyl‐tetrathiafulvalene (o‐DMTTF)2X (X = Cl, Br, and I), which all exhibit metallic properties at room temperature and undergo transitions to a semiconducting state in two steps: a soft metal‐to‐semiconductor regime change in the temperature region Tρ = 5–200 K and then a sharp phase transition at about TMI = 50 K. Polarized IR reflectance spectra (700–16 000 cm−1) and Raman spectra (50–3500 cm−1, excitation λ = 632.8 nm) of single crystals were measured as a function of temperature (T = 5–300 K) to assess the eventual formation of a charge‐ordered state below 50 K. Additionally, the temperature dependence of the IR absorption spectra of powdered crystals in KBr discs was also studied. The Raman spectra and especially the bands related to the CC stretching vibration of o‐DMTTF provide unambiguous evidence of uniform charge distribution on o‐DMTTF down to the lowest temperatures, without any modification below 50 K. However, the temperature dependence of Raman spectra indicates a regime change below about 200 K. Temperature dependence of both electronic dispersion and vibrational features observed in the IR spectra also clearly confirms the regime change below about 200 K and shows the involvement of C H···X hydrogen bonds in the electronic localization; some spectral changes can be also related with the phase transition at 50 K. Additionally, using density functional theory methods, the normal vibrational modes of the neutral o‐DMTTF0 and cationic o‐DMTTF+ species, as well as their theoretical IR and Raman spectra, were calculated. The theoretical data were compared with the experimental IR and Raman spectra of neutral o‐DMTTF molecule. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
The reaction channels of di‐tert‐butylcarbene ( 2 ), its radical anion, ( 3 ) and its radical cation ( 4 ) were investigated theoretically by using DFT/B3LYP with 6‐31+G(d) basis set and 6‐311+G(2d,p) for single point energy calculations. Conversion of the neutral carbene 2 to the charged species 3 and 4 results in significant geometric changes. In cation 4 two different types of C? (CH3)3 bonds are observed: one elongated sigma bond called “axial” with 1.61 Å and two normal sigma bonds with a bond length of 1.55 Å. Species 2 and 4 have an electron deficient carbon center; therefore, migration of CH3 and H is observed from adjacent tert‐butyl groups with low activation energies in the range of 6–9 kcal/mol like similar Wagner–Meerwein rearrangements in the neopentyl‐cation system. Neutral carbene 2 shows C? H insertion to give a cyclopropane derivative with an activation energy of 6.1 kcal/mol in agreement with former calculations. Contrary to species 2 and 4 , the radical anion 3 has an electron rich carbon center which results in much higher calculated activation energies of 26.3 and 42.1 kcal/mol for H and CH3 migrations, respectively. NBO charge distribution indicates that the hydrogen migrates as a proton. The central issue of this work is the question: how can tetra‐tert‐butylethylene ( 1 ) be prepared from reaction of either species 2 , 3 , or 4 as precursors? The ion–ion reaction between 3 and 4 to give alkene 1 with a calculated reaction enthalpy of 203.5 kcal/mol is extremely exothermic. This high energy decomposes alkene 1 after its formation into two molecules of carbene 2 spontaneously. Ion–molecule reaction of radical anion 3 with the neutral carbene 2 is a much better choice: via a proper oriented charge–transfer complex the radical anion of tetra‐tert‐butylethylene (11) is formed. The electron affinity of 1 was calculated to be negligible. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
For the first time, the experimental and theoretical evidence for the conversion of 4‐nitrobenzenethiol (4‐NBT) to p,p′‐dimercaptoazobenzene (DMAB) in Ag and Cu sols by surface photochemistry reaction is obtained with surface‐enhanced Raman scattering (SERS) spectroscopy. The SERS spectrum of 4‐NBT in Cu sol is identical to that of DMAB produced from 4‐aminothiophenol in Ag sol as reported in recent literature, thereby providing direct spectral evidence. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
The formation of N‐trifluoromethylsulfonyl‐2‐vinylaziridine and N‐trifluoromethylsulfonyl‐3‐pyrroline by the reaction of the singlet and triplet trifluoromethanesulfonylnitrenes with s‐cis‐ and s‐trans‐1,3‐butadienes was studied theoretically at the B3LYP/6‐311++G(d,p) and M06‐2X/6‐311++G(d,p) levels of theory. The singlet trifluoromethanesulfonylnitrene adds to s‐cis‐ and s‐trans‐1,3‐butadiene exothermally in one step to give the product of 1,2‐cycloaddition, N‐trifluoromethylsulfonyl‐2‐vinylaziridine, the energy decreasing by 88.5 and 86.2 kcal/mol at the B3LYP level and by 105.2 and 103.0 kcal/mol at the M06‐2X level, respectively. The formed 2‐vinylaziridine can undergo rotation about the C(2)–Csp2 bond with the barrier not exceeding 3.5 kcal/mol and to rearrange into N‐trifluoromethylsulfonyl‐3‐pyrroline. The triplet trifluoromethanesulfonylnitrene reacts with s‐cis‐ and s‐trans‐1,3‐butadiene in two steps. The first exothermic step is the formation of the triplet diradical adducts. The second step is the spin inversion with the energy raising by 5.8 and 17.8 kcal/mol at the B3LYP level and by 11.0 and 20.8 kcal/mol at the M06‐2X level for the adducts to s‐cis‐ and s‐trans‐1,3‐butadiene, respectively. Recombination of the radical centers occurs selectively to give N‐trifluoromethylsulfonyl‐2‐vinylaziridine that is exothermally rearranged into N‐trifluoromethylsulfonyl‐3‐pyrroline with the energy barrier of 40 kcal/mol at the B3LYP level and of 50 kcal/mol at the M06‐2X level. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
One of the first events taking place when a crystal of a metalloprotein is exposed to X‐ray radiation is photoreduction of the metal centres. The oxidation state of a metal cannot always be determined from routine X‐ray diffraction experiments alone, but it may have a crucial impact on the metal's environment and on the analysis of the structural data when considering the functional mechanism of a metalloenzyme. Here, UV–Vis microspectrophotometry is used to test the efficacy of selected scavengers in reducing the undesirable photoreduction of the iron and copper centres in myoglobin and azurin, respectively, and X‐ray crystallography to assess their capacity of mitigating global and specific radiation damage effects. UV–Vis absorption spectra of native crystals, as well as those soaked in 18 different radioprotectants, show dramatic metal reduction occurring in the first 60 s of irradiation with an X‐ray beam from a third‐generation synchrotron source. Among the tested radioprotectants only potassium hexacyanoferrate(III) seems to be capable of partially mitigating the rate of metal photoreduction at the concentrations used, but not to a sufficient extent that would allow a complete data set to be recorded from a fully oxidized crystal. On the other hand, analysis of the X‐ray crystallographic data confirms ascorbate as an efficient protecting agent against radiation damage, other than metal centre reduction, and suggests further testing of HEPES and 2,3‐dichloro‐1,4‐naphtoquinone as potential scavengers.  相似文献   

10.
For fundamental parameter‐based, quantitative X‐ray fluorescence, X‐ray photoelectron spectroscopy or Auger electron spectroscopy, it is crucial to accurately know the photoionization cross sections (PCS). This atomic probability to absorb the exciting photon and eject a photoelectron, in general, followed by a subsequent decay resulting in the emission of a fluorescence photon or an Auger electron, strongly depends on the electron configuration and photon energy. Two contrary models for the photon energy dependence of the L‐subshell PCS, or the 2s, 2p ½ and 2p 3/2; energy levels, respectively, exist in the literature, and an experimental verification was not available until recently. In this work, the two models for calculating the PCS are discussed, and their influence on quantitative experiments is demonstrated by means of the fluorescence production cross sections for the three L shells. Depending on the excitation conditions, these fluorescence production cross sections and, thus, the derived quantitative results can differ significantly if the wrong PCS model is employed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
The Boltzmann-Nordheim-Vlasov (BNV) equation has been solved by using a microscopic momentum-dependent (MD) nuclear mean field. This potential has been calculated in the framework of the self-consistent Brueckner theory up to the second order in the G-matrix. Comparison with the so-called soft and stiff Equation of State (EOS) is presented, using the Skyrme force. Calculations have been performed for the 93Nb + 93Nb reaction at Elab = 100, 250, 400A MeV. Our results show that the subthreshold π0 production cross-section is very sensitive to the momentum-dependent mean field, resulting, at the lowest energy, in a total cross-section a factor of 7 larger than that obtained with a local potential. The effect decreases as the bombarding energy increases.  相似文献   

12.
The crystal and magnetic structures of the Pr0.5Sr0.5CoO3 metallic ferromagnet have been studied using neutron diffraction and synchrotron radiation. Successive structural transitions with the reduction of the crystal symmetry from cubic (space group Pm3m) to rhombohedral (\(R\bar 3c\), ~800 K), orthorhombic (Imma, ~300 K) and, then, to triclinic at ~120 K are detected during cooling from 1120 K. The transition from the orthorhombic system to a phase with a lower symmetry is characterized by a sharp change in the anisotropy of the unit cell, which indicates the partial ordering of the e g orbitals of cobalt. The accompanying change in the interatomic distances and valence angles give rise to an anomaly in the temperature dependence of the magnetic susceptibility at T ≈ 120 K. The ordered magnetic moment μCo ≈ 2μB corresponds to the assumption of the intermediate spin state of Co3+ ions and the mixture of low- and intermediate-spin states of Co4+ ions.  相似文献   

13.
The OPERA experiment at the underground Gran Sasso Laboratory (LNGS) has to perform the first detection of neutrino oscillations in appearance mode through the direct observation of νμ → ντ. The apparatus consists of a lead/emulsion-film target complemented by electronic detectors. It is placed in the high-energy, long-baseline CERN neutrino beam (CNGS) 730 km away from the neutrino source. Runs with CNGS neutrinos were successfully carried out in 2008–2009 with the first candidate event νμ → gvτ recently detected.  相似文献   

14.
The ternary compound EuPtP exhibits two valence transitions at T 1 = 235 K and T 2 = 190 K. In order to examine a field-induced valence transition of Eu, we synthesized EuPtP1−x As x compounds with 0.05 ≤ x ≤ 0.5 and studied the magnetic and valence behavior. The substitution of As for P increases the lattice volume linearly and decreases both valence transition temperatures, T 1 and T 2, in contrast to the behavior under external pressures. The magnetization process in a pulsed magnetic field revealed that EuPtP0.5As0.5 exhibits an onset of metamagnetic transition above 50 T with a large hysteresis, which evidences a first-order field-induced valence transition. The analysis of the magnetization curves of x = 0.5 at various temperatures has demonstrated that the field-induced transition is essentially the same as the transition induced by temperature at T 1.  相似文献   

15.
The ab initio pseudopotential method within the generalized gradient approximation (GGA) and quasiparticle approximation has been used to investigate the electronic properties of titanium dioxide in the rutile, anatase, and fluorite structures, respectively. Here we present the GW approximation for the electronic self-energy, which allows to calculate excited-state properties, especially electronic band structures. For this calculation, good agreement with the experimental results for the minimum band gaps in rutile and anatase phase is obtained. In the fluorite phase we predict that titanium dioxide will be an indirect (Γ to X) wide band-gap semiconductor (2.367 or 2.369 eV) and the properties remain to be confirmed by experiment.  相似文献   

16.
17.
The purely resonant Bragg reflections (13, 13, 0) and (14, 0, 0) in yttrium aluminum garnet Y3Al5O12 at energies near the K absorption edge of yttrium have been studied experimentally and theoretically. The anisotropic tensor atomic factor of yttrium corresponding to dipole-dipole resonance transitions depends on three independent parameters changing with energy. The intensities of the reflections (14, 0, 0) and (13, 13, 0) are shown to depend on the parameter difference f 1(E) − f 2(E) and the parameter f 3(E), respectively, which are attributable to distortions of the wave functions of the excited atoms and change greatly with photon energy E. Studying various reflections has allowed one to determine the various components of the tensor atomic factor and to compare them with the results of numerical calculations.  相似文献   

18.
Quintessence field is a widely-studied candidate of dark energy. There is ``tracker solution' in quintessence models, in which evolution of the field ø at present times is not sensitive to its initial conditions. When the energy density of dark energy is neglectable (Ωø<< 1), evolution of the tracker solutioncan be well analysed from ``tracker equation'. In this paper, we try tostudy evolution of the quintessence field from ``full tracker equation',which is valid for all spans of Ωø. We get stable fixed points of wø and Ωø (noted as \hat{w}ø and \hat{Ω}ø) from the ``full tracker equation', i.e., wø and Ωø will always approach \hat{w}ø and \hat{Ω}ø respectively. Since \hat{w}ø and \hat{Ω}ø are analytic functions of ø, analytic relation of \hat{w}ø ~ \hat{Ω}ø can be obtained, which is a good approximation for the wø ~ Ωø relation and can be obtained for the most type of quintessence potentials. By using this approximation, we find that inequalities \hat{w}ø < wø and \hat{Ω}ø < Ωø are statisfied if the wø (or \hat{w}ø) decreases with time. In this way, the potential U(ø) can be constrained directly from observations, by no need of solving the equations of motion numerically.  相似文献   

19.
Luminescence photoexcitation spectra of α-Bi2O3 ceramics are investigated. Luminescence spectra were deconvoluted into fundamental components using the Alentsev-Fok method. It is established that the luminescence spectra of α-Bi2O3 ceramics consist of three fundamental bands with maxima at 2.75, 2.40, and 1.97 eV. A comparison of the results with those from an investigation of luminescence of various modifications of bismuth oxide and bismuth germanates suggests that luminescence of these compounds is caused by radiation processes that occur in structural complexes that contain the bismuth ion in a nearest oxygen environment. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 75, No. 5, pp. 672–676, September–October, 2008.  相似文献   

20.
The parameters of hyperfine interactions in Pb3+F 8 ? F a ? tetragonal clusters of MeF2 crystals (Me=Ca, Sr, Ba) are interpreted. The contributions of the spin polarization to the parameters of the proper hyperfine interaction and additional (ligand) hyperfine interactions are calculated in the approximation of weak binding between a charge-compensating ion F a ? and a cubic fragment in the tetragonal cluster. It is demonstrated that correct inclusion of the contributions from the spin polarization to the ligand isotropic hyperfine interaction for the F a ? ion leads to anomalously large parameters of this interaction for MeF2 crystals. These results are in agreement with experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号