首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The reaction of AlCl3 with Li2PR (R = SiiPr3, SiMeiPr2) in a mixture of heptane and ether yields in the polycyclic compounds [(AlCl)43‐PR)2(μ‐PR)2(Et2O)2]( 1a : R = SiiPr3; 1b : SiMeiPr2) with a ladder‐shaped Al4P4 core. The coordination sphere of the outer aluminium atoms in these compounds is completed by ether ligands. In contrast, the reaction of AlCl3 with Li2PSiiPr3 in pure heptane yields in the formation of the hexagonal prismatic compound [(AlCl)63‐PSiiPr3)6]( 2 ). 1 and 2 were characterized by single crystal X‐ray diffraction analysis as well as by 31P{1H} and 27Al NMR spectroscopy. The structure determining effect of the solvent can be rationalized by quantumchemical calculations, which also show that the hexagonal prismatic structure is the most stable of the investigated oligomers in absence of ether.  相似文献   

2.
The reaction of iPr2Si(PH2)2 ( 1 ) with [Ca{N(SiMe3)2}2(THF)2] at 25 °C in molar ratio 1:1 yields the compound [Ca3{iPr2Si(PH)2}3(THF)6] ( 2 ). Compound 2 consists of two Ca2P3 trigonal bipyramids with one conjoint calcium corner and SiiPr2 bridged phosphorus atoms. In contrast, the same reaction at 60 °C yield the complex [Ca({P(SiiPr2)2PH}2(THF)4] ( 3 ). The isotype strontium compound [Sr({P(SiiPr2)2PH}2(THF)4] ( 4 ) was obtained from the reaction of iPr2Si(PH2)2 with [Sr{N(SiMe3)2}2(DME)2]. The Compounds 2 – 4 were characterised by single crystal X‐ray diffraction, elemental analysis as well as IR and NMR spectroscopic techniques.  相似文献   

3.
In this work we report the synthesis and characterisation of the 1.5‐diphosphanyldiethylether O{C2H4PH(SiiPr3)}2 ( 2 ) in which two silyl‐substituted phosphine groups are linked by an ether bridge as well as the compound O(SiiPr2PHEt)2 ( 3 ) where two ethyl substitute phosphine groups are connected by a siloxane bridge. In addition, we describe the metalation of 2 and 3 with triisopropylindium. These reactions lead to the compounds [O{C2H4P(SiiPr3)IniPr2}2] ( 4 ) and [O{SiiPr2P(Et)IniPr2}2] ( 5 ) with In2P2 ring structures.  相似文献   

4.
The reaction of LiP(H)Tipp ( 2a ) and KP(H)Tipp ( 2b , Tipp = C6H2-2,4,6-iPr3), which are accessible via metalation of Tipp-PH2 ( 1 ), with bis(4-tert-butylphenyl)phosphinic chloride yields Tipp-P=P(OM)Ar2 [M = Li ( 3a ) and K ( 3b )]. These complexes show characteristic chemical 31P shifts and large 1JPP coupling constants. These compounds degrade with elimination of the phosphinidene Tipp-P: and the alkali metal diarylphosphinites M–O–PAr2 [M = Li ( 4a ) and K ( 4b )]. The phosphinidene forms secondary degradation products (like the meso and R,R/S,S-isomers of diphosphane Tipp-P(H)–P(H)Tipp ( 5 ) via insertion into a P–H bond of newly formed Tipp-PH2), whereas the crystallization of [Tipp-P=P(OLi)Ar2 · LiOPAr2 · LiCl · 2Et2O]2 (i.e. [ 3a·4a· LiCl · 2Et2O]2) succeeds from diethyl ether. The metathesis reactions of LiP(SiiPr3)Tipp and LiP(SiiPr3)Mes (Mes = C6H2-2,4,6-Me3) with Ar2P(O)Cl yield Ar*-P=P(OSiiPr3)Ar2 (Ar* = Mes, Tipp) which degrade to Ar2POSiiPr3 and other secondary products.  相似文献   

5.
The complex trans-[Rh(CO)(NH3)(PiPr3)2]PF6 (2) was prepared from [(η3-C3H5)Rh(PiPr3)2] (1), NH4PF6 and CO or from 1 and NH4PF6 in presence of an excess of methanol. With an excess of CO, the dicarbonyl and tricarbonyl compounds trans-[Rh(CO)2(PiPr3)2]PF6 (3) and [Rh(CO)3(PiPr3)2]PF6 (4) were obtained. Displacement of one CO ligand in 3 by pyridine and acetone led to the formation of trans-[Rh(CO)(py)PiPr3)2]PF6 (5a) and trans-[Rh(CO) (O=CMe2(PiPr3)2]PF6 (6), respectively. Treatment of 1 with [pyH]BF4 and pyridine gave trans-[Rh(py)2(PiPr3)2]BF4 (7); in presence of H2 the dihydrido complex [RhH2(py)2(PiPr3)2]BF4 (8) was formed. The reaction of 1 with NH4PF6 and ethylene produced trans [Rh(C2H4(NH3(PiPr3)2]PF6(9) whereas with methylvinylketone and acetophenone the octahedral hydridorhodium(III) complexes [RhH(η2-CH=CHC(=O)CH3 (NH3(PiPr3)2]PF6(11) and [RhH(η2-C6H4C(=O)CH3(NH3(Pipr3)2]PF6 (13) were obtained. The synthesis of the cationic vinylidenerhodium(I) compounds trans-[Rh(=C=CHR)(py)(PiPr3)2]BF4 (14–16) and trans-[Rh(=C=CHR)(NH3)(PiPr3) 2]PF6 (17–19) was achieved either on treatment of 1 with [pyH]BF4 or NH4PF6 in presence of 1-alkynes or by ethylene displacement from 9 by HCCR. With tert-butylacetylene as substrate, the alkinyl(hydrido)rhodium(III) complex [RhH(CCtBu)(NH3)(O=CMe2)(PiPr3) 2]PF6 (20) was isolated which in CH2Cl2 solution smoothly reacted to give 19 (R =tBu). The cationic but-2-yne compound trans-[Rh(MeCCMe)(NH3)(Pi Pr3)2]PF6 (21) was prepared from 1, NH4PF6 and C2Me2. The molecular structures of 3 and 14 were determined by X-ray crystallography; in both cases the square-planar coordination around the metal and the trans disposition of the phosphine ligands was confirmed.

Abstract

Der Komplex trans-[Rh(CO)(NH3)(PiPr3)2]PF6 (2) wurde aus [(η3-C3H5)Rh(PiPr3)2] (1), NH4PF6 und CO oder aus 1, NH4PF6 und Methanol hergestellt. In Gegenwart von überschüssigem CO wurden die Dicarbonyl- und Tricarbonyl-Verbindungen trans-[Rh(CO)2(PiPr3)2]PF6 (3) und [Rh(CO)3(PiPr3)2]PF6 (4) erhalten. Die Verdrängung eines CO-Liganden in 3 durch Pyridin oder Aceton führte zur Bildung von trans-[Rh(CO)(py)(PiPr3)2]PF6 (5a) bzw. trans-[Rh(CO)(O=CMe2)(PiPr3)2]PF6 (6). Bei Einwirkung von [pyH]BF4 und Pyridin auf 1 entstand trans-[Rh(py)2(PiPr3)2]BF4 (7); in Gegenwart von H2 bildete sich der Dihydrido-Komplex [RhH2(py)2(PiPr3) 2]BF4 (8). Die Reaktion von 1 mit NH4PF6 und Ethen lieferte trans-[Rh(C2H4)(NH3)(PiPr3)2] PF6 (9) während mit Methylvinylketon und Acetophenon die oktaedrischen Hydridorhodium(III)-Komplexe [RhH(η2-CH=CHC(=O)CH3 (NH3)-(PiPr3)2]PF6 (11) und [RhH(η-2-C6H4C(=O)CH3(NH3)(PiPr3)2)2]PF6 (13) erhalten wurden. Die Synthese der kationischen Vinyli-denrhodium(I)-Verbindungen trans-[Rh(=C=CHR(py)(PiPr3)2]BF4 (14–16) und trans-[Rh(=C=CHR)(NH3)(PiPr3)2]PF6 (17–19) gelang durch Einwirkung von [pyH]BF4 bzw. NH4PF6 auf 1 in Gegenwart von 1-Alkinen oder durch Ethen-Verdrängung aus 9 mit HCCR. Mit tert-Butylacetylen als Reaktionspartner wurde der Alkinyl(hydrido)rhodium(III)-Komplex [RhH(CCtBu)(NH3(O=CMe2)(PiPr3)2]PF6 (20) isoliert, der in CH2Cl2-Lösung sofort zu 19 (R =tBu) reagiert. Die kationische 2-Butin-Verbindung trans -[Rh(MeCCMe)(NH3)PiPr3)2]PF6 (21) wurde aus 1, NH4PF6 und C2Me2 hergestellt. Die Strukturen von 3 und 14 wurden kristallographisch bestimmt; in beiden Fa len ließ sich die quadratisch-planare Koordination des Metalls und die trans-Anordnung der Phosphanliganden bestätigen.  相似文献   

6.
The Tris(triisopropylsilyl)pnikogenes: Synthesis and Characterisation of [E(Si i Pr3)3] (E = P, As, Sb) The compounds [E(SiiPr3)3] (E = P, As, Sb) ( 1 – 3 ) were prepared in high yields by the reaction of (Na/K)3E with iPr3SiCl in DME. They were characterised by 1H‐, 13C‐, 29Si‐ and 31P‐NMR spectroscopy, mass spectrometry and single crystal X‐ray diffraction. Compound 1 , recently obtained in a different way, shows an unusual trigonal planar coordination of the central phosphorus atom. However, 2 and 3 , featuring increasing covalence radii of the central atoms, show an increasingly pyramidal structure. 1 – 3 crystallise isotyp in the cubic spacegroup Pa 3, the lattice constants are: 1 : a = 1860.1(2) pm, 2 : a = 1873.6(2) pm, 3 : a = 1897.1(2) pm.  相似文献   

7.
Lithium 8‐amidoquinoline ( 1 ) and lithium 8‐(trialkylsilylamido)quinoline [SiMe2tBu ( 2 ), SiiPr3 ( 3 )] react with dimethylgallium chloride to the metathesis products dimethylgallium 8‐amidoquinoline ( 4 ) as well as dimethylgallium 8‐(trialkylsilylamido)quinoline [SiMe2tBu ( 5 ), SiiPr3 ( 6 )]. The gallium atoms are in distorted tetrahedral environments. During the synthesis of 5 , orange dimethylgallium 2‐butyl‐8‐(tert‐butyldimethylsilylamido)quinoline ( 7 ) was found as by‐product. The metathesis reactions of Me2GaCl with LiN(R)CH2Py (Py = 2‐pyridyl) yield the corresponding 2‐pyridylmethylamides Me2Ga‐N(H)CH2Py ( 8 ), Me2Ga‐N(SiMe2tBu)CH2Py ( 9 ) and Me2Ga‐N(SiiPr3)CH2Py ( 10 ). In these complexes the gallium atoms show a distorted tetrahedral coordination sphere. However, derivative 8 crystallizes dimeric with bridging amido units whereas in 9 and 10 the 2‐pyridylmethylamido moieties act as bidentate ligands leading to monomeric molecules.  相似文献   

8.
Molecular Aggregates of Donorsolvent-Free Lithiumsilylphosphanides with the Triphenylsilyl- and Triisopropylsilyl-Substituent at Phosphorus The lithiumphosphanides 6 and 7 were formed by lithiation of the bulky disilylphosphanes 1 a and 1 b with nBuLi in toluene as solvent. 1 a and 1 b are accessible in high yield by simple salt-elimination reactions, following a one-pot procedure. X-ray crystal structure determinations revealed that 6 exists as an donorsolvent-free dimer, whereas, surprisingly, 7 is a mixed tetrameric aggregate bearing three molecules LiP(SiiPr3)2 and one molecule LiPH(SiiPr3). The aggregate building block LiPH(SiiPr3) is obviously formed upon a nucleophilic Si? P bond cleavage in 1 b under the reaction conditions used for the lithiation. The tetramer 7 shows a unprecedented structure of a lithiumphosphanide: The lithium atoms are twofold-coordinated and exhibit extremely large endocyclic angles (153.4–164.5°). Furthermore the P4Li4 heterocyclooctane framework ist strongly flattened and the bulky silyl groups obviously suppress a rearrangement to a normal ladder-like structure. The flattened pyramidal coordination of the P atom, which bears one SiiPr3 group and one H atom, is probably due to steric effects.  相似文献   

9.
The coordination chemistry of the water soluble phosphane oxide ligand tris[2‐isopropylimidazol‐4(5)‐yl]phosphane oxide, 4‐TIPOiPr, has been explored. A variety of 3d‐metal halide complexes have been prepared and the crystal structures of the solvates [(4‐TIPOiPr)ZnCl2]·MeOH·1/2dioxane ( 1 ·MeOH·1/2dioxane), [(4‐TIPOiPr)CoCl2]·H2O·2dioxane ( 2 ·H2O·2dioxane) and [(4‐TIPOiPr)2Ni(MeOH)2]Cl2·2MeOH ( 3 ·2MeOH) have been determined. All three structures show unprecedented coordination modes of the 4‐TIPOiPr ligand. Both zinc and cobalt complexes are coordinated in a bidentate κ2N fashion, whereas the nickel atom is coordinated by two ligands in a κN,O mode using one imidazolyl substituent and the P=O oxygen atom.  相似文献   

10.
Synthesis, Structure, and Thermolysis of the (NH4)3[M2(NO3)9] (M ? La? Gd) The ternary ammonium nitrates (NH4)3[M2(NO3)9] (M ? La-Gd) are obtained as single crystals from a solution of the respective sesquioxides in a melt of NH4NO3 and sublimation of the excess NH4NO3. In the crystal structure of (NH4)3[Pr2(NO3)9] (cubic, P4332, Z = 4, a = 1 377.0(1) pm, R = 0.038, Rw = 0.023) Pr3+ is surrounded by six bidentate nitrate ligands of which three are bridging to neighbouring Pr3+ ions. This results in a branched folded chain, held together by the NH4+ ions which occupy cavities in the structure. (NH4)3[Pr2(NO3)9] is the first intermediate product of the thermal decomposition of (NH4)2[Pr(NO3)5(H2O)2] · 2H2O.  相似文献   

11.
Reaction of the PH2‐transfer reagent Si(PH2)4 ( 1 ) with SiCl4 affords a mixture of the ClnSi(PH2)4–n compounds ( 2 a , n = 1), ( 2 b , n = 2), and ( 2 c , n = 3) which were characterized by 1H‐31P‐COSY NMR spectroscopy. The formation of ( 2 a ) is drastically accelerated by using GeCl4 instead of SiCl4 as PH2 acceptor, but a stable molecular GeCl4–n(PH2)n containing product could not be obtained. In contrast, conversion of (C6F5)3GeCl with Si(PH2)4 ( 1 ) furnishes 2 a but also the remarkably stable tris(pentafluorophenyl)phosphaneylgermane ( 3 ). The latter is isolated in the form of colorless crystals in 97% yield and represents the first PH2‐substituted germane being structurally characterized by single‐crystal X‐ray diffraction. Protolysis of 1 with MeOH and PhOH occurs relatively fast and leads to mixtures of compounds of the type (RO)nSi(PH2)4–n ( 4 , n = 1), ( 5 , n = 2), and ( 6 , n = 3). The sterically congested phenols MesOH and 3,5‐Me2PhOH react with 1 only to the respective mono‐ and disubstituted silylphosphanes ( 4 c , d ) and ( 5 c , d ), respectively; 4 c and 4 d were isolated by fractional condensation in the form of air‐ and moisture‐sensitive oils. Lithiation of 1 with four molar equiv. of LiNiPr2 in THF/Et2O at –80 °C, surprisingly, leads to insoluble Si(PHLi)4 ( 8 a ) which was tetrasilylated with iPr3SiOSO2CF3, affording the tetrakis(triisopropylsilylphosphaneyl)silane ( 8 b ). However, attempts to achieve the tetralithiation of the P atoms in 8 b through reaction with four molar equiv. BuLi leads to the unexpected cluster formation of butyl‐tris[lithium(triisopropylsilyl)phosphanideyl] silane‐dimer ( 9 ) in 30% yield and LiPHSiiPr3; compound 9 consists of a Li6P6Si2 cluster framework.  相似文献   

12.
New Copper Complexes Containing Phosphaalkene Ligands. Molecular Structure of [Cu{P(Mes*)C(NMe2)2}2]BF4 (Mes* = 2,4,6‐tBu3C6H2) Reaction of equimolar amounts of the inversely polarized phosphaalkene tBuP=C(NMe2)2 ( 1a ) and copper(I) bromide or copper(I) iodide, respectively, affords complexes [Cu3X3{μ‐P(tBu)C(NMe2)2}3] ( 2 ) (X =Br) and ( 3 ) (X = I) as the formal result of the cyclotrimerization of a 1:1‐adduct. Treatment of 1a with [Cu(L)Cl] (L = PiPr3; SbiPr3) leads to the formation of compounds [CuCl(L){P(tBu)C(NMe2)2}] ( 4a ) (L = PiPr3) and ( 4b ) (L = SbiPr3), respectively. Reaction of [(MeCN)4Cu]BF4 with two equivalents of PhP=C(NMe2)2 ( 1b ) yields complex [Cu{P(Ph)C(NMe2)2}2]BF4 ( 5b ). Similarly, compounds [Cu{P(Aryl)C(NMe2)2}2]BF4 ( 5c (Aryl = Mes and 5d (Aryl = Mes*)) are obtained from ArylP=C(NMe2)2 ( 1c : Aryl = Mes; 1d : Mes*) and [(MeCN)4Cu]BF4 in the presence of SbiPr3. Complexes 2 , 3 , 4a , 4b , and 5b‐5d are characterized by means of elemental analyses and spectroscopy (1H‐, 13C{1H}‐, 31P{1H}‐NMR). The molecular structure of 5d is determined by X‐ray diffraction analysis.  相似文献   

13.
The reaction of the NHC iPr2Im [NHC=N‐heterocyclic carbene, iPr2Im = 1, 3‐bis(isopropyl)imidazolin‐2‐ylidene] with freshly prepared NiBr2 in thf or dme results in the formation of the air stable nickel(II) complex trans‐[Ni(iPr2Im)2Br2] ( 2 ). Complex 2 was structurally characterized. Thermal analysis (DTA/TG) reveals a very high decomposition temperature of 298 °C. Reduction of 2 with sodium or C8K in the presence of the olefins COD (cyclooctadiene) or COE (cyclooctene) affords the highly reactive compounds [Ni2(iPr2Im)4(COD)] ( 1 ) and [Ni(iPr2Im)2(COE)] ( 4 ). Alkylation of 2 with organolithiums leads to the formation of trans‐[Ni(iPr2Im)2(R)2] [R = Me ( 5 ), CH2SiMe3 ( 6 )], whereas the reaction of 2 with LiCp* [Cp* = (η5‐C5(CH3)5)] at 80 °C causes the loss of one NHC ligand and affords [(η5‐C5(CH3)5)Ni(iPr2Im)Br] ( 7 ).  相似文献   

14.
The branched triphosphanyltetrasilane PhSi(SiMe2PH2)3 ( 1 ) could be obtained in a three‐stage synthesis. It was characterised by multi‐nuclear NMR spectroscopy, mass spectrometry and IR spectroscopy. Deprotonation of 1 with GaiPr3 or [M{N(SiMe3)2}2(thf)2] (M = Ca, Sr, Ba) yields new phosphorus bridged polynuclear complexes of these metals with phosphorus atoms connected through tetrasilane fragments. While trinuclear complexes with single deprotonated phosphanyl groups could be obtained from the reactions of 1 with GaiPr3, calcium or barium silazanide (compounds 2 , 3 and 5 ), the tetranuclear complex [Sr4{PhSi(SiMe2PH)2(SiMe2P)}2(dme)6] ( 4 ) was formed in the reaction of 1 with strontium silazanide. In this compound, two of six phosphorus atoms are deprotonated twice. Compounds 2 – 5 were characterised by single‐crystal X‐ray diffraction, elemental analysis as well as IR spectroscopy and as far as possible by NMR spectroscopic techniques.  相似文献   

15.
The Dihydridoiridium(III) Complex [IrH2Cl(P i Pr3)2] as a Molecular Building Block for Unsymmetrical Binuclear Rhodium–Iridium and Iridium–Iridium Compounds The title compound [IrH2Cl(PiPr3)2] ( 3 ) reacts with the chloro‐bridged dimers [RhCl(PiPr3)2]2 ( 1 ) and [IrCl(C8H14)(PiPr3)]2 ( 5 ) by cleavage of the Cl‐bridges to give the unsymmetrical binuclear complexes 4 and 6 with Rh(μ‐Cl)2Ir and Ir(μ‐Cl)2Ir as the central building block. The reactions of 3 with the bis(cyclooctene) and (1,5‐cyclooctadiene) compounds [MCl(C8H14)2]2 ( 7 , 8 ) and [MCl(η4‐C8H12)]2 ( 9 , 10 ) (M = Rh, Ir) occur analogously and afford the rhodium(I)‐iridium(III) and iridium(I)‐iridium(III) complexes 11 – 14 in 70–80% yield. Treatment of [(η4‐C8H12)M(μ‐Cl)2IrH2(PiPr3)2] ( 13 , 14 ) with phenylacetylene leads to the formation of the substitution products [(η4‐C8H12)M(μ‐Cl)2IrH(C≡CPh)(PiPr3)2] ( 15 , 16 ) without changing the central molecular core. Similarly, the compound [(η4‐C8H12)Rh(μ‐Br)2IrH(C≡CPh)(PiPr3)2] ( 18 ) has been prepared; it was characterized by X‐ray crystallography.  相似文献   

16.
Preparation, Crystal Structure, and Magnetism of [(CH3)2NH2][PrCl4(H2O)2] The complex water containing chloride [(CH3)2NH2][PrCl4(H2O)2] has been prepared for the first time and the crystal structure has been determined from single crystal X‐ray diffraction data. The compound crystallizes orthorhombically in the space group Cmca (Z = 8) with a = 1796.6(2) pm, b = 940.7(1) pm, and c = 1238.4(2) pm. The anionic part of the structure is built up by chains of edge‐connected trigondodecahedra [PrCl6(H2O)2]3– according to [PrCl4/2Cl2(H2O)2], which are held together by dimethylammonium cations ([(CH3)2NH2]+). In order to study the interactions between the praseodymium cation (Pr3+) and the ligands magnetic measurements were carried out. The magnetic data were interpreted by ligand field calculations applying the angular overlap model.  相似文献   

17.
The reactions of the diphosphanylsiloxane O(SiiPr2PH2)2 (1) with MiPr3 (M = Ga, In) produced the polycyclic compounds [O{SiiPr2(PH)MiPr2}{SiiPr2(P)MiPr}] 2 (2, 3). Compounds 2 and 3 are composed of three M2P2 rings forming a ladder structure and two OSi2P2M rings. By reactions of 1 with n-BuLi the polymeric compound [O(SiiPr2PHLi)2(THF)(TMEDA)] · THF (4) was obtained.  相似文献   

18.
The surprisingly facile preparation of (RGe)2(NH2)4(NH) ( 1 ; R=iPr2C6H3NSiMe3), which contains one NH and four NH2 groups, is achieved by the introduction of gaseous ammonia into a solution of iPr2C6H3NSiMe3GeBr3 in diethyl ether.  相似文献   

19.
Iridium(I) and Iridium(III) Complexes with Triisopropylarsane as Ligand The ethene complex trans‐[IrCl(C2H4)(AsiPr3)2] ( 2 ), which was prepared from [IrCl(C2H4)2]2 and AsiPr3, reacted with CO and Ph2CN2 by displacement of ethene to yield the substitution products trans‐[IrCl(L)(AsiPr3)2] ( 3 : L = CO; 4 : L = N2). UV irradiation of 2 in the presence of acetonitrile gave via intramolecular oxidative addition the hydrido(vinyl)iridium(III) compound [IrHCl(CH=CH2)(CH3CN)(AsiPr3)2] ( 5 ). The reaction of 2 with dihydrogen led under argon to the formation of the octahedral complex [IrH2Cl(C2H4)(AsiPr3)2] ( 7 ), whereas from 2 under 1 bar H2 the ethene‐free compound [IrH2Cl(AsiPr3)2] ( 6 ) was generated. Complex 6 reacted with ethene to afford 7 and with pyridine to give [IrH2Cl(py)(AsiPr3)2] ( 8 ). The mixed arsane(phosphane)iridium(I) compound [IrCl(C2H4)(PiPr3)(AsiPr3)] ( 11 ) was prepared either from the dinuclear complex [IrCl(C2H4)(PiPr3)]2 ( 9 ) and AsiPr3 or by ligand exchange from [IrCl(C2H4)(PiPr3)(SbiPr3)] ( 10 ) und triisopropylarsane. The molecular structure of 5 was determined by X‐ray crystallography.  相似文献   

20.
Nanosheet compounds Pd11(SiiPr)2(SiiPr2)4(CNtBu)10 ( 1 ) and Pd11(SiiPr)2(SiiPr2)4(CNMes)10 ( 2 ), containing two Pd7(SiiPr)(SiiPr2)2(CNR)4 plates (R=tBu or Mes) connected with three common Pd atoms, were investigated with DFT method. All Pd atoms are somewhat positively charged and the electron density is accumulated between the Pd and Si atoms, indicating that a charge transfer (CT) occurs from the Pd to the Si atoms of the SiMe2 and SiMe groups. Negative regions of the Laplacian of the electron density were found between the Pd and Si atoms. A model of a seven‐coordinated Si species, that is, Pd5(Pd?SiMe), is predicted to be a stable pentagonal bipyramidal molecule. Five Pd atoms in the equatorial plane form bonding overlaps with two 3p orbitals of the Si atom. This is a new type of hypervalency. The Ge analogues have geometry and an electronic structure similar to those of the Si compounds. But their formation energies are smaller than those of the Si analogues. The use of the element Si is crucial to synthesize these nanoplate compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号