首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The brown crystals of [NEt4]2[Se3Br8(Se2Br2)] ( 1 ) were obtained when selenium and bromine reacted in the solution of acetonitrile in the presence of tetraethylammonium bromide. The crystal structure of 1 has been determined by the X‐ray methods and refined to R = 0.0308 for 10433 reflections. The crystals are monoclinic, space group P21 with Z = 2 and a = 12.0393(3) Å, b = 11.8746(3) Å, c = 13.1946(3) Å, β = 96.561(1)° (123 K). In the solid state structure the anion of 1 is built up of Se3Br8 unit which consists of a triangular arrangement of three planar SeBr4 units sharing a common edge through two μ3‐bridging Br atoms, and one Se2Br2 molecule which is linked to one of μ3‐bridging Br atoms. The three SeII atoms form a triangle which is almost perpendicular to the planes given by three SeBr4 moieties. The contact between the μ3Br and the SeI atom of the Se2Br2 molecule is 3.1711(8) Å and can be interpreted as a bond of the donor‐acceptor type with the μ3Br as donor and the Se2Br2 molecule as acceptor. The terminal SeII‐Br and μ3Br‐SeII bond lengths are in the ranges 2.3537(7)–2.4737(7) Å and 2.7628(7)–3.1701(7) Å, respectively. The bond lengths in coordinated Se2Br2 molecule are: SeI‐SeI = 2.2636(9) Å, SeI‐Br = 2.3387(11) and 2.3936(8) Å.  相似文献   

2.
The brown crystals of [PMePh3]2[Se2Br6] ( 1 ) and red crystals of [PMePh3]2[SeBr6(SeBr2)2] ( 2 ) were obtained when selenium and bromine reacted in the solution of acetonitrile in the presence of methyltriphenylphosphonium bromide. The crystal structures of 1 and 2 has been determined by the X‐ray methods and refined to R = 0.0373 for 2397 reflections and 0.0397 for 3417 reflections, respectively. The salt 1 crystallizes in the monoclinic space group P21/n with the cell dimensions a = 13.202(5) Å, b = 11.954(4) Å, c = 13.418(6) Å, β = 93.08(4)° (193(2)). The crystals of 2 are triclinic, space group with the cell dimensions a = 10.266(3) Å, b = 11.311(3) Å, c = 11.619(2) Å, α = 108.87(2)°, β = 105.72(2)°, γ = 99.40(2)° (193(2) K). In the solid state structure of 1 the dinuclear hexabromo‐diselenate(II) anion is centrosymmetric and consists of two distorted almost square planar SeBr4 units sharing a common edge through two μ‐bridging Br atoms. The terminal SeII–Br bonds are 2.3984(11) and 2.4273(11) Å, whereas the bridging μBr–SeII bonds are 2.7817(11) and 2.9081(12) Å. In the solid state the trinuclear [SeBr6(SeBr2)2]2? anion of 2 is centrosymmetric too and contains a nearly regular [SeBr6] octahedron where the four equatorial bromo ligands each have developed bonds to the SeII atoms of the SeBr2 molecules. The contacts between the bridging bromo and the SeII atoms of the SeBr2 molecules are 3.0603(15) and 3.1043(12) Å, and can be interpreted as bonds of the donor‐acceptor type with the bridging bromo ligands as donors and the SeBr2 molecules as acceptors. The SeIV–Br distances are in the range 2.5570(9)–2.5773(11) Å and the SeII–Br bond lengths in coordinated SeBr2 molecules – 2.3411(12) and 2.3421(10) Å.  相似文献   

3.
The Red crystals of [PPh4]2[Se2Br6(Se2Br2)2] ( 1 ) were obtained when selenium and bromine reacted in the solution of acetonitrile in the presence of tetraphenylphosphonium bromide. The crystal structure of 1 has been determined by X‐ray diffraction and refined to R = 0.0201 for 4024 reflections. The crystals are triclinic, space group with Z = 2 and a = 11.2757(4) Å, b = 12.3347(5) Å, c = 12.4948(5) Å, α = 113.152(4)°, β = 114.745(4)°, γ = 91.208(3)° (120(2) K). In the solid state the anion of 1 is built up of the Se2Br6 core and two Se2Br2 molecules each of which is linked to one of the trans‐positioned terminal Brt atoms of the Se2Br6 core. The central Se2Br6 part consists of a nearly planar arrangement of two planar SeBr4 units sharing a common edge through two μ2‐bridging Br atoms. The contact between the Brt and the SeI atom of the Se2Br2 molecule is 3.0872(5) Å and can be interpreted as a bond of the donor‐acceptor type with the Brt as donor and the Se2Br2 molecule as acceptor. The terminal SeII–Br and μ2Br–SeII bond lengths are 2.3654(4), 2.6699(5) Å and 2.5482(5), 3.0265(5) Å, respectively. The bond lengths in the coordinated Se2Br2 molecule are: SeI–SeI = 2.2686(5) Å, SeI–Br = 2.3779(5) and 2.3810(5) Å.  相似文献   

4.
Brown crystals of [NMe4]4[(Se4Br10)2(Se2Br2)2] ( 1 ) were obtained from the reaction of selenium and bromine in acetonitrile in the presence of tetramethylammonium bromide. The crystal structure of 1 was determined by X‐ray diffraction and refined to R = 0.0297 for 8401 reflections. The crystals are monoclinic, space group P21/c with Z = 4 and a = 12.646(3) Å, b = 16.499(3) Å, c = 16.844(3) Å, β = 101.70(3)° (123 K). In the solid‐state structure, the anion of 1 is built up of two [Se4Br10]2– ions. Each shows a triangular arrangement of three planar SeBr4 units sharing a common edge through two μ3‐bridging bromine atoms, and one SeBr2 molecule, which is linked to the SeII atoms of two SeBr4 units; between the Se4Br102– ions a dimerized Se2Br2 molecule (Se4Br4) is situated and one SeI atom of each Se2Br2 molecule has two weak contacts [3.3514(14) Å and 3.3952(11) Å] to two bromine atoms of one SeBr4 unit. Four SeI atoms of a dimerized Se2Br2 molecule are in a almost regular planar tetraangular arrangement. Contacts between the SeII atom of the SeBr2 molecule and the SeII atoms of two SeBr4 units are 3.035(1) Å and 3.115(1) Å, and can be interpreted as donor‐acceptor type bonds with the SeII atoms of SeBr4 units as donors and the SeBr2 molecule as acceptor. The terminal SeII–Br and μ3‐Br–SeII bond lengths are in the ranges 2.3376(10) to 2.4384(8) Å and 2.8036(9) to 3.3183(13) Å, respectively. The bond lengths in the dimerized Se2Br2 molecule are: SeI–SeI = 2.2945(8) Å and 3.1398(12), SeI–Br = 2.3659(11) and 2.3689(10) Å.  相似文献   

5.
Red crystals of [NMeEt3]2n[TeBr6(Se2Br2)3]n ( 1 ) were isolated when selenium and bromine (1:1) were allowed to react in acetonitrile solution in the presence of tellurium(IV) bromide and methyltriethylammonium bromide (1:2). The salt 1 crystallizes in the monoclinic space group C2/c with the cell dimensions a = 27.676(6) Å, b = 9.665(2) Å, c = 18.796(4) Å and ß = 124.96(3)° (120 K). The [TeBr6(Se2Br2)3]2— anions contain nearly regular octahedral [TeBr6]2— ions which are incorporated into a polymeric chain by bonding contacts between 3 facial bromo ligands and 3 Se2Br2 molecules, one of which is situated on the twofold symmetry axis. The distances between the μBr ligands and the SeI atoms of the Se2Br2 molecules are observed in the range 3.308(2) — 3.408(2) Å and can tentatively be interpreted as donor‐acceptor bonds with μBr as donors and Se2Br2 as acceptors. The TeIV—Br distances are in the range 2.669(1) — 2.687(1) Å. The bond lengths in the connecting Se2Br2 molecules are: SeI—SeI = 2.267(2) and 2.281(2) Å, SeI—Br = 2.340(1), 2.353(1) and 2.337(1) Å.  相似文献   

6.
Novel Oxonium Halogenochalcogenates Stabilized by Crown Ethers: [H3O(Dibromo‐benzo‐18‐crown‐6)]2[Se3Br10] and [H5O2(Bis‐dibromo‐dibenzo‐24‐crown‐8]2[Se3Br8] Two novel complex oxonium bromoselenates(II,IV) and –(II) are reported containing [H3O]+ and [H5O2]+ cations coordinated by crown ether ligands. [H3O(dibromo‐benzo‐18‐crown‐6)]2[Se3Br10] ( 1 ) and [H5O2(bis‐dibromo‐dibenzo‐24‐crown‐8]2[Se3Br8] ( 2 ) were prepared as dark red crystals from dichloromethane or acetonitrile solutions of selenium tetrabromide, the corresponding unsubstituted crown ethers, and aqueous hydrogen bromide. The products were characterized by their crystal structures and by vibrational spectra. 1 is triclinic, space group (Nr. 2) with a = 8.609(2) Å, b = 13.391(3) Å, c = 13.928(3) Å, α = 64.60(2)°, β = 76.18(2)°, γ = 87.78(2)°, V = 1404.7(5) Å3, Z = 1. 2 is also triclinic, space group with a = 10.499(2) Å, b = 13.033(3) Å, c = 14.756(3) Å, α = 113.77(3)°, β = 98.17(3)°, γ = 93.55(3)°. V = 1813.2(7) Å3, Z = 1. In the reaction mixture complex redox reactions take place, resulting in (partial) reduction of selenium and bromination of the crown ether molecules. In 1 the centrosymmetric trinuclear [Se3Br10]2? consists of a central SeIVBr6 octahedron sharing trans edges with two square planar SeIIBr4 groups. The novel [Se3Br8]2? in 2 is composed of three planar trans‐edge sharing SeIIBr4 squares in a linear arrangement. The internal structure of the oxonium‐crown ether complexes is largely determined by the steric restrictions imposed by the aromatic rings in the crown ether molecules, as compared to complexes with more flexible unsubstituted crown ether ligands.  相似文献   

7.
Dark brown crystals of [NnPr4]2[TeBr6(SeBr2)2] ( 1 ) were obtained when selenium and bromine (1:1) were allowed to react in acetonitrile solution in the presence of tellurium(IV) bromide and tetrapropylammonium bromide. The salt 1 crystallizes in the monoclinic space group P21/n with the cell dimensions a = 14.7870(3) Å, b = 9.5523(3) Å, c = 16.7325(3) Å, β = 110.56(10)° (at 123(2) K). In the solid state the [TeBr6(SeBr2)2]2– anion contains a nearly regular [TeBr6] octahedron in which the four equatorial bromo ligands have developed bonds to SeII atoms of the SeBr2 molecules. The contacts between the bridging bromo and the SeII atoms of the SeBr2 molecules are 3.0000(4) and 3.0561(4) Å, and can be interpreted as bonds of the donor‐acceptor type with the bridging bromo ligands as donors and the SeBr2 molecules as acceptors. The TeIV–Br distances are in the range 2.6816(3)–2.7131(3) Å and the SeII–Br bond lengths in the coordinated SeBr2 molecules are 2.3548(4) and 2.3725(4) Å.  相似文献   

8.
Brown crystals of [PMePh3]2[TeBr6(SeBr2)2] ( 1 ) were obtained when selenium and bromine (1:1) react in acetonitrile solution in the presence of tellurium(IV) bromide and methyltriphenylphosphonium bromide. The salt 1 crystallizes in the triclinic space group P1¯ with the cell dimensions a = 10.3630(14)Å, b = 11.5140(12)Å, c = 11.7605(17)Å, α = 108.643(9)°, β = 106.171(10)° and γ = 99.077(9)° (296 K). In the solid state the [TeBr6(SeBr2)2]2— anion contains a nearly regular [TeBr6] octahedron where the four equatorial bromo ligands each have developed a bond to the SeII atom of a SeBr2 molecule. The contacts between the bridging bromo and the SeII atoms of the SeBr2 molecules are observed in the range 3.11—3.21Å, and can be interpreted as bonds of the donor‐acceptor type with the bridging bromo ligands as donors and the SeBr2 molecules as acceptors. The TeIV—Br distances are in the range 2.67—2.72Å, and the SeII—Br bond lengths in coordinated SeBr2 molecules in the range 2.33—2.34Å.  相似文献   

9.
Synthesis and Crystal Structures of (Ph3PNPPh3)2[Re2Br10] and (Ph4P)[Re2Br9] Depending on the molar ratio by reaction of [n-Bu4N]2[ReBr6] with the Lewis acid BBr3 in dichloromethane the bioctahedral complexes [n-Bu4N]2[Re2Br10] and [n-Bu4N][Re2Br9] are formed. The X-ray structure determination on (Ph3PNPPh3)2[Re2Br10] (monoclinic, space group C 2/c, a = 20.007(4), b = 15.456(5), c = 24.695(4) Å, β = 107.53(2)°, Z = 4) reveals a centrosymmetric edge-sharing complex anion with approximate D2h symmetry and mean terminal and bridging Re–Br bond lengths of 2.453 (equatorial), 2.482 (axial) and 2.591 Å, respectively, and a Re–Re distance of 3.880 Å. (Ph4P)[Re2Br9] (triclinic, space group P 1, a = 11.062(2), b = 12.430(3), c = 13.163(5) Å, α = 72.94(2), β = 68.47(2), γ = 82.09(2)°, Z = 2) contains a confacial bioctahedral anion with nearly D3h symmetry and mean terminal and bridging Re–Br distances of 2.460 and 2.536 Å, respectively, and a Re–Re distance of 2.780 Å.  相似文献   

10.
[Ph4P]2[Bi2Br8(CH3COCH3)2] ( 1 ) was obtained by the reaction of [Ph4P]Br and BiBr3 in acetone. Single crystals were grown by allowing a layer of n‐hexane to diffuse into the acetonic solution of 1 . The crystal structure was determined by means of X‐ray diffraction. 1 crystallises with monoclinic symmetry in the space group P21/n, No. 14 with the lattice parameters: a = 13.358(2), b = 12.637(2), c = 18.565(3) Å, β = 102.62(1)°, V = 3058.1(8) Å3 and Z = 4. The structure is characterised by the anion [Bi2Br8(CH3COCH3)2]2– which is embedded in a matrix of [Ph4P]+ cations. The anion can be described as two edge‐sharing square pyramids with the apical bromide ions in anti‐position. Acetone co‐ordinates the bismuth atoms via oxygen atoms and increases the co‐ordination number of central bismuth atoms to six which results in the formation of a distorted bi‐octahedron. The distortion is due to the difference in terminal and bridging Bi–Br bond lengths. FT‐IR and Raman spectroscopic data are presented. In addition, the thermal behaviour of the compound was studied with the aid of TG/DSC coupled with MS revealing that acetone leaves the crystal in two steps. The compound melts at 203 °C and transforms into a glass on cooling.  相似文献   

11.
The reaction of W6Br12 with AgBr in evacuated silica tubes (temperature gradient 925 K/915 K) yielded brownish black octahedra of Ag[W6Br14] ( I ) and yellowish green platelets of Ag2[W6Br14] ( II ) both in the low temperature zone. ( I ) crystallizes cubically (Pn3 (no. 201); a = 13.355 Å, Z = 4) and ( II ) monoclinically (P21/c (no. 14); a = 9.384 Å, b = 15.383 Å, c = 9.522 Å, β = 117.34°, Z = 2). Both crystal structures contain isolated cluster anions, namely [(W6Bri8)Bra6]1– and [(W6Bri8)Bra6])]2–, respectively, with the mean distances and angles: ( I ) d(W–W) = 2.648 Å, d(W–Bri) = 2.617 Å, d(W–Bra) = 2.575 Å, d(Bri…Bri) = 3.700 Å, d(Bri…Bra) = 3.692 Å, ∠W–Bri–W = 60.78°. ( II ) d(W–W) = 2.633 Å, d(W–Bri) = 2.624 Å, d(W–Bra) = 2.613 Å, d(Bri…Bri) = 3.710 Å, d(Bri…Bra) = 3.707 Å, ∠W–Bri–W = 60.23°. The Ag+ cations are trigonal antiprismatically coordinated in ( I ) with d(Ag–Br) = 2.855 Å, but distorted trigonally planar in ( II ) with d(Ag–Br) = 2.588–2.672 Å. The structural details of hitherto known compounds with [W6Br14] anions will be discussed.  相似文献   

12.
Cubic [Ta6Br12(H2O)6][CuBr2X2]·10H2O and triclinic [Ta6Br12(H2O)6]X2·trans‐[Ta6Br12(OH)4(H2O)2]·18H2O (X = Cl, Br, NO3) cocrystallize in aqueous solutions of [Ta6Br12]2+ in the presence of Cu2+ ions. The crystal structures of [Ta6Br12(H2O)6]Cl2·trans‐[Ta6Br12(OH)4(H2O)2]·18H2O ( 1 ) and [Ta6Br12(H2O)6]Br2·trans‐[Ta6Br12(OH)4(H2O)2]·18H2O ( 3 )have been solved in the triclinic space group P&1macr; (No. 2). Crystal data: 1 , a = 9.3264(2) Å, b = 9.8272(2) Å, c = 19.0158(4) Å, α = 80.931(1)?, β = 81.772(2)?, γ = 80.691(1)?; 3 , a = 9.3399(2) Å, b = 9.8796(2) Å, c = 19.0494(4) Å; α = 81.037(1)?, β = 81.808(1)?, γ = 80.736(1)?. 1 and 3 consist of two octahedral differently charged cluster entities, [Ta6Br12]2+ in the [Ta6Br12(H2O)6]2+ cation and [Ta6Br12]4+ in trans‐[Ta6Br12(OH)4(H2O)2]. Average bond distances in the [Ta6Br12(H2O)6]2+ cations: 1 , Ta‐Ta, 2.9243 Å; Ta‐Bri , 2.607 Å; Ta‐O, 2.23 Å; 3 , Ta‐Ta, 2.9162 Å; Ta‐Bri , 2.603 Å; Ta‐O, 2.24 Å. Average bond distances in trans‐[Ta6‐Br12(OH)4(H2O)2]: 1 , Ta‐Ta, 3.0133 Å; Ta‐Bri, 2.586 Å; Ta‐O(OH), 2.14 Å; Ta‐O(H2O), 2.258(9) Å; 3 , Ta‐Ta, 3.0113 Å; Ta‐Bri, 2.580 Å; Ta‐O(OH), 2.11 Å; Ta‐O(H2O), 2.23(1) Å. The crystal packing results in short O···O contacts along the c axes. Under the same experimental conditions, [Ta6Cl12]2+ oxidized to [Ta6Cl12]4+ , whereas [Nb6X12]2+ clusters were not affected by the Cu2+ ion.  相似文献   

13.
The reaction of W6Br12, NaBr, and WO2Br2 in the presence of Br2 in a sealed silica tube yields Na[W2O2Br6] together with WOBr4 and WO2Br2 in the low temperature zone (temperature gradient 1030/870 K). Na[W2O2Br6] crystallizes orthorhombically in the space group Immm (no. 71) with a = 3.775 Å, b = 10.400 Å, c = 13.005 Å and Z = 2. Pairs of condensed trans-[WO2Br4] octahedra with a common Br2 edge form along [100] double chains [W2O4/2Br6]1– via the oxygen atoms. The mixed valent tungsten atoms are bonded to W2 pairs with a 2 c–3 e bond (d(W–W) = 2.946 Å, d(W–O) = 1.888 Å, d(W–Brb) = 2.537 Å, d(W–Brt) = 2.535 Å, ∢O–W–O = 177.4°, ∢Brb–W–Brb (endocyclic) = 109.0°). The Na+ cations connect the anionic double chains to form two-dimensional layers parallel (001), which interact by van der Waals forces. The cations are eightfold coordinated by a cube of the terminal Brt ligands of the polymeric anions (d(Na–Br) = 3.138 Å). Na[W2O2Br6] may be discussed as an intercalation compound of the oxide bromide WOBr3.  相似文献   

14.
Chloro- and Polyselenoselenates(II): Synthesis, Structure, and Properties of [Ph3(C2H4OH)P]2[SeCl4] · MeCN, [Ph4P]2[Se2Cl6], and [Ph4P]2[Se(Se5)2] By symproportionation of elemental selenium and SeCl4 in polar protic solvents the novel chloroselenates(+II), [SeCl4]2? and [Se2Cl6]2?, could be stabilized; they were crystallized with voluminous organic cations. They were characterized from complete X-ray structure analysis. Yellow-orange [Ph3(C2H4OH)P]2[SeCl4] · MeCN (space group P1 , a = 10.535(4), b = 12.204(5), c = 16.845(6) Å, α = 77.09(3)°, β = 76.40(3)°, γ = 82.75(3)° at 140 K) contains in its crystal structure monomeric [SeCl4]2? anions with square-planar coordination of Se(+II). The mean Se? Cl bond length is 2.441 Å. In yellow [Ph4P]2[Se2Cl6] (space group P1 , a = 10.269(3), b = 10.836(4), c = 10.872(3) Å, α = 80.26(3)°, β = 79.84(2)°, γ = 72.21(3)° at 140 K) a dinuclear centrosymmetric [Se2Cl6]2? anion, also with square-planar coordinated Se(+II), is observed. The average terminal and bridging Se? Cl bond distances are 2.273 and 2.680 Å, respectively. From redox reactions of elemental Se with boranate/thiolate in ethanol/DMF the bis(pentaselenido)selenate(+II) anion [Se(Se5)2]2? was prepared as a novel type of a mixed-valent chalcogenide. In dark-red-brown [Ph4P]2[Se(Se5)2] (space group P21/n, a = 12.748(4), b = 14.659(5), c = 14.036(5) Å, β = 108.53(3)° at 140 K) centrosymmetric molecular [Se(Se5)2]2? anions with square-planar coordination of the central Se(+II) by two bidentate pentaselenide ligands is observed (mean Se? Se bond lengths: 2.658 Å at Se(+II), 2.322 Å in [Se5]2?). The resulting six-membered chelate rings with chair conformation are spirocyclically linked through the central Se(+II). The vibrational spectra of the new anions are reported.  相似文献   

15.
Novel Halogenochalcogeno(IV) Acids: [H3O(Benzo‐18‐Crown‐6)]2[Te2Br10] and [H5O2(Dibenzo‐24‐Crown‐8)]2[Te2Br10] Systematic studies on halogenochalcogeno(IV) acids containing tellurium and bromine led to the new crystalline phases [H3O(Benzo‐18‐Crown‐6)]2[Te2Br10] ( 1 ) and [H5O2(Dibenzo‐24‐Crown‐8)]2[Te2Br10] ( 2 ). The [Te2Br10]2‐ anions consists of two edge‐sharing distorted TeBr6 octahedra, the oxonium cations are stabilized by crownether. ( 1 ) crystallizes in the monoclinic space group P21/n with a = 14.520(5) Å, b = 22.259(6) Å, c = 16.053(5) Å, β = 97.76(3)° and Z = 4, whereas ( 2 ) crystallizes in the triclinic space group with a = 11.005(4) Å, b = 12.103(5) Å, c = 14.951(6) Å, α = 71.61(3)°, β = 69.17(3)°, γ = 68.40(3)° and Z = 1.  相似文献   

16.
The reaction of W6Br12 with CuBr sealed in an evacuated silica tube at the temperature gradient 925/915 K and annealing at 625/300 K yields a mixture of orthorhombic α-Cu2[W6Br14] and cubic β-Cu2[W6Br14] in the low temperature zone. α-Cu2[W6Br14] crystallizes in the space group Pbca (no. 61), a = 15.126 Å, b = 9.887 Å, c = 15.954 Å, Z = 4, oP88, and β-Cu2[W6Br14] crystallizes in the space group Pn3 (no. 201), a = 13.391 Å, Z = 4, cP88. The crystal structures are built up by [(W6Br)Br]2– cluster anions and Cu+ cations. The cluster anions show only in the peripheral shells small deviation from m3m symmetry (d(W–W) = 2.630 Å; d(W–Bri) = 2.618 Å; d(W–Bra) = 2.614 Å). The anions are arranged in a slightly compressed bcc pattern (α) and ccp (β) pattern, respectively. The Cu+ cations are trigonal-planar coordinated by Bra ligands with d(Cu–Br) = 2.377 Å (α) and 2.378 Å (β). The cubic β-modification is diamagnetic with an unexpected large susceptibility (χmol = –884 × 10–6 cm3 mol–1) and have a band gap of 2.8 eV. It decomposes under dynamic vacuum in two steps at 795 K und 1040 K.  相似文献   

17.
The phase diagram of the system [Ph4P]Br/BiBr3 was investigated with the aid of DSC, TG and temperature dependent X‐ray powder diffraction measurements. By varying the reaction conditions, stoichiometry and crystallisation conditions of the reaction between BiBr3 and [Ph4P]Br four polynuclear bromobismuthates are formed. We report here the crystal structure of the solvation product [Ph4P]3[Bi2Br9] · CH3COCH3, which crystallises with monoclinic symmetry in the S. G. P21/n No. 14, a = 12.341(1), b = 32.005(3), c = 19.929(3) Å, β = 99.75(2)°, V = 7758(7) Å3, Z = 4 and the crystal structures of two modifications of the compound [Ph4P]4[Bi6Br22]. The α‐form, crystallises with triclinic symmetry in the S. G. P1 No. 2, a = 13.507(4) Å, b = 14.434(4) Å, c = 17.709(5) Å, α = 81.34(2)°, β = 72.42(2)°, γ = 72.53(2)°, V = 3132.7(1) Å3, Z = 2. The high‐temperature β‐form, crystallises with triclinic symmetry in the S. G. P1 No. 2, a = 13.893(4) Å, b = 14.267(3) Å, c = 16.580(3), α = 100.13(2)°, β = 96.56(2)°, γ = 110.01(2)°, V = 2985.5(1) Å3, Z = 2. Lattice parameters of [Ph4P]4[Bi8Br28] are also given. The thermal behaviour of the compounds and in addition the vibrational spectra of [Ph4P]3[Bi2Br9] · CH3COCH3 are presented and discussed.  相似文献   

18.
Chalcogenohalogenogallates(III) and -indates(III): A New Class of Compounds for Elements of the Third Main Group. Preparation and Structure of [Ph4P]2[In2SX6], [Et4N]3[In3E3Cl6] · MeCN and [Et4N]3[Ga3S3Cl6] · THF (X = Cl, Br; E = S, Se) [In2SCl6]2?, [In2SBr6]2?, [In3S3Cl6]3?, [In3Se3Cl6]3?, and [Ga3S3Cl6]3? were synthesised as the first known chalcogenohalogeno anions of main group 3 elements. [Ph4P]2[In2SCl6] ( 1 ) (P1 ; a = 10.876(4) Å, b = 12.711(6) Å, c = 19.634(7) Å, α = 107.21(3)°, β = 96.80(3)°, γ = 109.78(3)°; Z = 2) and [Ph4P]2[In2SBr6] ( 2 ) (C2/c; a = 48.290(9) Å, b = 11.974(4) Å, c = 17.188(5) Å, β = 93.57(3)°, Z = 8) were prepared by reaction of InX3, (CH3)3SiSSi(CH3)3 and Ph4PX (X = Cl, Br) in acetonitrile. The reaction of MCl3 (M = Ga, In) with Et4NSH/Et4NSeH in acetonitrile gave [Et4N]3[In3S3Cl6] · MeCN ( 3 ) (P21/c; a = 17.328(4) Å, b = 12.694(3) Å, c = 21.409(4) Å, β = 112.18(1)°, Z = 4), [Et4N]3[In3Se3Cl6] · MeCN ( 4 ) (P21/c; a = 17.460(4) Å, b = 12.816(2) Å, c = 21.513(4) Å, β = 112.16(2)°, Z = 4), and [Et4N]3[Ga3S3Cl6] · THF ( 5 ) (P21/n; a = 11.967(3) Å, b = 23.404(9) Å, c = 16.260(3) Å, β = 90.75(2)°, Z = 4). The [In2SX6]2? anions (X = Cl, Br) in 1 and 2 consist of two InSX3 tetrahedra sharing a common sulfur atom. The frameworks of 3, 4 and 5 each contain a six-membered ring of alternating metal and chalcogen atoms. Two terminal chlorine atoms complete a distorted tetrahedral coordination sphere around each metal atom.  相似文献   

19.
Syntheses, Crystal Structures, and Triple Twinning of the Cluster Trimers Bi2[PtBi6Br12]3 and Bi2[PtBi6I12]3 Melting reactions of Bi with Pt and BiX3 (X = Br, I) yield shiny black, air insensitive crystals of the subhalides Bi2[PtBi6X12]. Bi2[PtBi6Br12]3 crystallizes in the monoclinic space group C2/m with lattice parameters a = 1617.6(2) pm, b = 1488.5(1) pm, c = 1752.4(2) pm, and β = 110.85(4)°. Bi2[PtBi6I12]3 adopts the triclinic space group with pseudo‐monoclinic lattice parameters a = 1711.2(2) pm, b = 1585.1(1) pm, c = 1865.7(2) pm, and α = 90°, β = 111.15(4)°, γ = 90°. The two homoeotypic compounds consist of cuboctahedral [Pt?IIBiII6X?I12]2? clusters that are concatenated into linear trimers by BiIII atoms. The ordered distribution of BiIII atoms destroys the inherent threefold rotation axes in the packing of cluster anions. As a consequence of the pseudosymmetry the crystals are triple twinned along [201]. Due to different orientations of the cluster trimers there are two BiII···X inter‐cluster bridges per BiII atom in Bi2[PtBi6Br12]3 but only one bridge in Bi2[PtBi6I12]3. The structure of the iodine compound can be deduced from the NaCl structure type, leaving 37 of 96 atomic positions unoccupied. The arrangement of the cuboctahedral clusters follows the motif of a body‐centered cubic packing.  相似文献   

20.
Syntheses and Structures of (Et4N)2[Re(CO)3(NCS)3] and (Et4N)[Re(CO)2Br4] Rhenium(I) and rhenium(III) carbonyl complexes can easily be prepared by ligand exchange reactions starting from (Et4N)2[Re(CO)3Br3]. Using nonoxidizing reagents the facial ReI(CO)3 unit remains and only the bromo ligands are exchanged. Following this procedure, (Et4N)2[Re(CO)3(NCS)3] can be obtained in high yield and purity using trimethylsilylisothiocyanate. The compound crystallizes in the monoclinic space group P21/n, a = 18.442(5), b = 17.724(3), c = 18.668(5) Å, β = 92.54(1)°, Z = 8. The NCS? ligands are coordinated via nitrogen. The reaction of [Re(CO)3Br3]2? with Br2 yields the rhenium(III) anion [Re(CO)2Br4]?. The tetraethylammonium salt of this complex crystallizes in the noncentrosymmetric, orthorhombic space group Cmc21, a = 8.311(1), b = 25.480(6), c = 8.624(1) Å, Z = 4. The carbonyl ligands are positioned in a cis arrangement. Their strong trans influence causes a lengthening of the Re? Br bond distances by at least 0.05 Å.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号