首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Red single crystals of Pt2(HSO4)2(SO4)2 were obtained by the reaction of elemental platinum with conc. sulfuric acid at 350 °C in sealed glass ampoules. The crystal structure (monoclinic, P21/c, Z = 2, a = 868.6(2), b = 826.2(1), c = 921.8(2) pm, β=116.32(1)°, Rall = 0.0348) shows dumbbell shaped Pt26+ cations which are coordinated by four SO42— and two HSO4 ions. Each of the sulfate ions is attached to another Pt26+ ion yielding layers according to equation/tex2gif-stack-1.gif[Pt2(SO4)4/2(HSO4)2/1]. The layers are connected by hydrogen bonds with the OH group of the hydrogensulfate ion as donor and the non‐bonding oxygen atom of the sulfate ion as acceptor.  相似文献   

2.
Sulfates and Hydrogensulfates of Erbium: Er(HSO4)3-I, Er(HSO4)3-II, Er(SO4)(HSO4), and Er2(SO4)3 Rod shaped light pink crystals of Er(HSO4)3-I (orthorhombic, Pbca, a = 1195.0(1) pm, b = 949.30(7) pm, c = 1644.3(1) pm) grow from a solution of Er2(SO4)3 in conc. H2SO4 at 250 °C. From slightly diluted solutions (85%) which contain Na2SO4, brick shaped light pink crystals of Er(HSO4)3-II (monoclinic, P21/n, a = 520.00(5) pm, b = 1357.8(1) pm, c = 1233.4(1) pm, β = 92.13(1)°) were obtained at 250 °C and crystals of the same colour of Er(SO4)(HSO4) (monoclinic, P21/n, a = 545.62(6) pm, b = 1075.6(1) pm, c = 1053.1(1) pm, β = 104.58(1)°) at 60 °C. In both hydrogensulfates, Er3+ is surrounded by eight oxygen atoms. In Er(HSO4)3-I layers of HSO4 groups are connected only via hydrogen bridges, while Er(HSO4)3-II consists of a threedimensional polyhedra network. In the crystal structure of Er(SO4)(HSO4) Er3+ is sevenfold coordinated by oxygen atoms, which belong to four SO42–- and three HSO4-tetrahedra, respectively. The anhydrous sulfate, Er2(SO4)3, cannot be prepared from H2SO4 solutions but crystallizes from a NaCl-melt. The coordination number of Er3+ in Er2(SO4)3 (orthorhombic, Pbcn, a = 1270.9(1) pm, b = 913.01(7) pm, c = 921.67(7) pm) is six. The octahedral coordinationpolyhedra are connected via all vertices to the SO42–-tetrahedra.  相似文献   

3.
Synthesis and Structure of New Sodium Hydrogen Sulfates Na(H3O)(HSO4)2, Na2(HSO4)2(H2SO4), and Na(HSO4)(H2SO4)2 Three acidic sodium sulfates have been synthesized from the system sodium sulfate/sulfuric acid and have been crystallographically characterized. Na(H3O)(HSO4)2 ( A ) crystallizes in the space group P21/c with the unit cell parameters a = 6.974(2), b = 13.086(2), c = 8.080(3) Å, α = 105.90(4)°, V = 709.1 Å3, Z = 4. Na2(HSO4)2(H2SO4) ( B ) is orthorhombic (space group Pna21) with the unit cell parameters a = 9.970(2), b = 6.951(1), c = 13.949(3) Å, V = 966.7 Å3 and Z = 4. Na(HSO4)(H2SO4)2 ( C ) crystallizes in the triclinic space group P1 with the unit cell parameters a = 5.084(1), b = 8.746(1), c = 11.765(3) Å, α = 68.86(2)°, β = 88.44(2)°, γ = 88.97(2)°, V = 487.8 Å3 and Z = 2. All three compounds contain SO4 tetrahedra as HSO4? anions and additionally in B and C in form of H2SO4 molecules. The ratio H:SO4 determines the connectivity degree in the hydrogen bond system. In A , there are zigzag chains and dimers additionally connected via oxonium ions. Complex chains consisting of cyclic trimers (two HSO4? and one H2SO4) are present in B . In structure C , several parallel chains are connected to columns due to the greater content of H2SO4. Sodium cations show a distorted octahedral coordination by oxygen in all three structures, the NaO6 octahedra being “isolated” (connected via SO4 tetrahedra only) in A . Pairs of octahedra with common edge form Na2O10 dimeric units in C . Such double octahedra are connected via common corners forming zigzag chains in B .  相似文献   

4.
Synthesis and Crystal Structure of K2(HSO4)(H2PO4), K4(HSO4)3(H2PO4), and Na(HSO4)(H3PO4) Mixed hydrogen sulfate phosphates K2(HSO4)(H2PO4), K4(HSO4)3(H2PO4) and Na(HSO4)(H3PO4) were synthesized and characterized by X‐ray single crystal analysis. In case of K2(HSO4)(H2PO4) neutron powder diffraction was used additionally. For this compound an unknown supercell was found. According to X‐ray crystal structure analysis, the compounds have the following crystal data: K2(HSO4)(H2PO4) (T = 298 K), monoclinic, space group P 21/c, a = 11.150(4) Å, b = 7.371(2) Å, c = 9.436(3) Å, β = 92.29(3)°, V = 774.9(4) Å3, Z = 4, R1 = 0.039; K4(HSO4)3(H2PO4) (T = 298 K), triclinic, space group P 1, a = 7.217(8) Å, b = 7.521(9) Å, c = 7.574(8) Å, α = 71.52(1)°, β = 88.28(1)°, γ = 86.20(1)°, V = 389.1(8)Å3, Z = 1, R1 = 0.031; Na(HSO4)(H3PO4) (T = 298 K), monoclinic, space group P 21, a = 5.449(1) Å, b = 6.832(1) Å, c = 8.718(2) Å, β = 95.88(3)°, V = 322.8(1) Å3, Z = 2, R1 = 0,032. The metal atoms are coordinated by 8 or 9 oxygen atoms. The structure of K2(HSO4)(H2PO4) is characterized by hydrogen bonded chains of mixed HnS/PO4 tetrahedra. In the structure of K4(HSO4)3(H2PO4), there are dimers of HnS/PO4 tetrahedra, which are further connected to chains. Additional HSO4 tetrahedra are linked to these chains. In the structure of Na(HSO4)(H3PO4) the HSO4 tetrahedra and H3PO4 molecules form layers by hydrogen bonds.  相似文献   

5.
Synthesis and Crystal Structure of Metal(I) Hydrogen Sulfates – Ag(H3O)(HSO4)2, Ag2(HSO4)2(H2SO4), AgHSO4, and Hg2(HSO4)2 Hydrogen sulfates Ag(H3O)(HSO4)2, Ag2(HSO4)2 · (H2SO4), and AgHSO4 have been synthesized from Ag2SO4 and sulfuric acid. Hg2(HSO4)2 was obtained from metallic mercury and 96% sulfuric acid as starting materials. The compounds were characterized by X‐ray single crystal structure determination. Ag(H3O)(HSO4)2 belongs to the structure type of Na(H3O)(HSO4). The silver atom is coordinated by 6 + 2 oxygen atoms. In the structure, there are dimers and chains of hydrogen bonded HSO4 tetrahedra. Dimers and chains are connected by the H3O+ ion to form a three dimensional hydrogen network. Ag2(HSO4)2(H2SO4) crystallizes isotypic to Na2(HSO4)2(H2SO4). The coordination number of silver is 6 + 1. The structure of Ag2(HSO4)2(H2SO4) is characterized by hydrogen bonded trimers of HSO4 tetrahedra, which are further connected to chains. For the recently published structure of AgHSO4 the hydrogen bonding system was discussed. There are tetrameres and chains, connected by bifurcated hydrogen bonds. The structure of Hg2(HSO4)2 contains Hg22+ cations with Hg–Hg distance of 2.509 Å. Every mercury atom is coordinated by one oxygen atom at shorter distance (2.18 Å) and three ones at longer distances (2.57 to 3.08 Å). The HSO4 tetrahedra form zigzag chains by hydrogen bonds.  相似文献   

6.
Hydrogen Sulfates with Disordered Hydrogen Atoms – Synthesis and Structure of Li[H(HSO4)2](H2SO4)2 and Refinement of the Structure of α-NaHSO4 The structure of Li[H(HSO4)2](H2SO4)2 has been determined for the first time whereas the structure of α-NaHSO4 has been refined, so that direct determination of the hydrogen positions was possible. Both compounds crystallize triclinic in the space group P1 with the lattice constants a = 6.708(2), b = 6.995(1), c = 7.114(1) Å, α = 75.53(1), β = 84.09(2) and γ = 87.57(2)° (Z = 4) for α-NaHSO4 and a = 4.915(1), b = 7.313(1), c = 8.346(2) Å, α = 82.42(3), β = 86.10(3) and γ = 80.93(3)° (Z = 1) for Li[H(HSO4)2](H2SO4)2. In both compounds there are disordered hydrogen positions. In the structure of α-NaHSO4 there are two crystallographically different HSO4? tetrahedra and two different coordinated Na atoms. The system of hydrogen bonds can be described by chains in [0–11] direction. The disordering of the H atoms reduces the differences between the S? O and S? OH distances (1.45 and 1.50 Å) while in the ordered HSO4 unit “regular” bond lengths are observed (1.45 und 1,57 Å). In the structure of Li[H(HSO4)2](H2SO4)2 there are two crystallographically different SO4-tetrahedra. The first one belongs to the [H(HSO4)2]? unit while the second one represents H2SO4 molecules. The H atom which is located nearby the symmetry centre and connects two HSO4 units by a short O…?O distance of 2.44 Å. Li is located on a symmetry centre and is slightly distorted octahedrally coordinated by oxygen atoms of six different SO4 tetrahedra. The system of hydrogen bonds can be regarded as consisting of double layers parallel to the xy-plane.  相似文献   

7.
A New Lithium Hydrogen Sulfate, Li2(HSO4)2(H2SO4) – Synthesis and Crystal Structure The title compound crystallizes in good shaped single crystals from the system lithium sulfate/sulfuric acid in the orthorhombic space group Pccn, unit cell parameters a = 17.645(4), b = 5.378(1), c = 10.667(3) Å. V = 1 012.2 Å3, Z = 4, Dx = 2.009 g cm?3. There are two types of SO4 tetrahedra, SO3(OH) and SO2(OH)2, connected via hydrogen bonds forming layers parallel to the xy-plane. The layers are linked by Li atoms, which are tetrahedral coordinated by O atoms coming two by two from neighboured layers.  相似文献   

8.
Potassium Hydrogensulfate Dihydrogensulfate, K(HSO4)(H2SO4) – Synthesis and Crystal Structure Single crystals with the composition KH3(SO4)2 have been synthesized from the system Potassium sulfate/sulfuric acid. The hitherto crystallographically not investigated compound crystallizes in the monoclinic space group P21/c (14) with the unit cell parameters a = 7.654(3), b = 11.473(5) and c = 8.643(3) Å, β = 112.43(3)°, V = 701.6 Å3, Z = 4 and Dx = 2.22 g · cm?3. The structure contains two types of tetrahedra, SO3(OH) and SO2(OH)2. These tetrahedra form tetramers via hydrogen bonds consisting of both, two SO3(OH) and two SO2(OH)2 tetrahedra. The tetramers are linked to each other via hydrogen bonds. Potassium is coordinated by 9 oxygen atoms which belong to both kinds of tetrahedra. These potassium oxygen polyhedra are connected by common faces forming chains running parallel z.  相似文献   

9.
Syntheses and Crystal Structures of Y(HSO4)3-I and Y(HSO4)3 · H2O Lath shaped crystals of Y(HSO4)-I are obtained by treatment of Y2O3 with conc. sulfuric acid at 200 °C. Y(HSO4)3-I crystallizes orthorhombic (Pbca, Z = 8, a = 1201.5(1), b = 953.76(8), c = 1650.4(1) pm, Rall = 0.0388). In the crystal structure Y3+ is coordinated by eight monodentate HSO4 groups. Colorless, plate like single crystals of Y(HSO4)3 · H2O grew from a solution of Y2O3 in 85% sulfuric acid upon cooling. In the crystal structure of the triclinic compound (P1, Z = 2, a = 679.8(1), b = 802.8(2), c = 965.9(2) pm, α = 79.99(2)°, β = 77.32(2)°, γ = 77.50(2)°, Rall = 0.0264) Y3+ is surrounded by seven HSO4 groups and one molecule of water.  相似文献   

10.
Synthesis and Characterization of Ca(HSO4)2 · 2 H2SO4 or H2[Ca(HSO4)4], respectively ?Ca(HSO4)2 · 2 H2SO4”? crystallizes from CaSO4 saturated hot H2SO4c below 310 K. With SOCl2 containing ether it is possible, to remove two moles H2SO4 and to prepare Ca(HSO4)2. ?Ca(HSO4)2 · 2 H2SO4”? shows two endothermal effects at Tp1 = 336 K and Tp2 = 477 K during the thermal analysis. Whereas Tp2 corresponds to the segregation of H2SO4 from Ca(HSO4)2, Tp1 is attributed to the loss of two moles H2SO4. These results are supported by x-ray heating measurements on single crystals. From oscillation and Weissenberg photographs with CuKα the unit cell was determined. In agreement with these parameters, the compound is to formulate as the complex acid H2[Ca(HSO4)4].  相似文献   

11.
Synthesis and Structure of Hydrogen Sulfates of the Type M(HSO4)(H2SO4) (M = Rb, Cs and NH4) From the binary systems M2SO4/H2SO4 (M = Rb, Cs, NH4), three new hydrogen sulfates of the type M(HSO4)(H2SO4) could be synthesized and structural characterized. The rubidium and caesium compounds are isotypic whereas NH4(HSO4)(H2SO4) is topologically very similar to both. All three compounds crystallize with nearly identical cell parameters [Rb: a = 7.382(1), b = 12.440(2), c = 7.861(2), β = 93.03(3); Cs: a = 7.604(1), b = 12.689(2), c = 8.092(2), β = 92.44(3); NH4: a = 7.521(3), b = 12.541(5), c = 7.749(3), β = 92.74(3)], in the monoclinic space group P21/c, There exist two kinds of SO4-tetrahedra: HSO4? anions (S1) and H2SO4-molecules (S2). The HSO4? anions form hydrogen bridged zigzag chains. In the case of the Rb and Cs compounds, the H2SO4 molecules connect these chains forming double layers. The metal atoms are coordinated by 9 O-atoms with M? O-distances of 2.97 – 3.39 Å (Rb) and 3.13 – 3.51 Å (Cs). In the ammonium compound additional hydrogen bonds are formed originating from the NH4+ cation. This finally leads to the formation of S2? NH4+ chains (parallel to the S1 chains) as well as to a three-dimensional connection of both kinds of chains.  相似文献   

12.
Acidic Sulfates of Neodymium: Synthesis and Crystal Structure of (H5O2)(H3O)2Nd(SO4)3 and (H3O)2Nd(HSO4)3SO4 Light violett single crystals of (H5O2)(H3O)2 · Nd(SO4)3 are obtained by cooling of a solution prepared by dissolving neodymium oxalate in sulfuric acid (80%). According to X‐ray single crystal investigations there are H3O+ ions and H5O2+ ions present in the monoclinic structure (P21/n, Z = 4, a = 1159.9(4), b = 710.9(3), c = 1594.7(6) pm, β = 96.75(4)°, Rall = 0.0260). Nd3+ is nine‐coordinate by oxygen atoms. The same coordination number is found for Nd3+ in the crystal structure of (H3O)2Nd(HSO4)3SO4 (triclinic, P1, Z = 2, a = 910.0(1), b = 940.3(1), c = 952.6(1) pm, α = 100.14(1)°, β = 112.35(1)°, γ = 105.01(1)°, Rall = 0.0283). The compound has been prepared by the reaction of Nd2O3 with chlorosulfonic acid in the presence of air. In the crystal structure both sulfate and hydrogensulfate groups occur. In both compounds pronounced hydrogen bonding is observed.  相似文献   

13.
Structure and Thermal Behaviour of Gadolinium(III)-sulfate-octahydrate Gd2(SO4)3 · 8 H2O . Gd2(SO4)3 · 8 H2O crystallizes monoclinic with space group C2/c and the lattice constants a = 13.531(7), b = 6.739(2), c = 18.294(7) Å, β = 102.20(8)°. In the structure Gd is coordinated by 4 oxygen atoms of crystal water and 4 oxygens of sulfate giving rise to a distorted square antiprism. During DTA-TG-experiments the title compound first loses crystal water in a two-step mechanism in the temperature range 130–306°C. The resulting Gd2(SO4)3 is amorphous and recrystallization occurs in the range 380–411°C. The so-obtained low-temperature modification β-Gd2(SO4)3, undergoes a monotropic phase transition at about 750°C to the high-temperature form α-Gd2(SO4)3. The powder pattern of this modification was indexed based on monoclinic symmetry with space group C2/c and lattice constants a = 9.097(3), b = 14.345(5), c = 6.234(2) Å, β = 97.75(8)°. The hightemperature modification of gadolinium-sulfate shows decomposition to Gd2O2SO4 at 900°C and, subsequently, decomposition at 1 200°C yields the formation of C-Gd2O3.  相似文献   

14.
Synthesis and Crystal Strucure of NaPr2F3(SO4)2 Light green single crystals of NaPr2F3(SO4)2 have been obtained by the reaction of Pr2(SO4)3 and NaF in sealed gold ampoules at 1050 °C. In the crystal structure (monoclinic, I2/a, Z = 4, a = 822.3(1), b = 692.12(7), c = 1419.9(2) pm, β = 95.88(2)°) Pr3+ is coordinated by four F ions and six oxygen atoms which belong to five SO4 ions. Thus, one of the latter acts as a bidentate ligand. The [PrO6F4] units are connected via three common fluoride ions to pairs with a Pr–Pr distance of 386 pm. Na+ is sevenfold coordinated by three fluorine and four oxygen atoms.  相似文献   

15.
A New Potassium Hydrogensulfate, K(H3O)(HSO4)2 — Synthesis and Structure Single crystals of the new compound K(H3O)(SO4)2 are synthesized from the system potassium sulfate/sulfuric acid. The up to day not described compound crystallizes in the monoclinic space group P21/c with the unit cell parameters a = 7.203(1) b = 13.585(2) and c = 8.434(1) Å, β = 105.54(1)°, V = 795.1 Å3, Z = 4 and Dx = 2.107 g · cm?3. There are two crystallographically different tetrahedral SO3(OH) anions. The first kind S1 tetrahedra forms dimers, whereas the second kind S2 forms infinite chains bonded via hydrogen bridges. The S1 dimers are linked to the S2 chains via oxonium ions (hydrogen bonds). Potassium is coordinated by 8 oxygen atoms which belong to four different SO3(OH) tetrahedra. These potassium oxygen polyhedra are connected by common edges forming chains running parallel z.  相似文献   

16.
A Novel Iodine(III, V) Mixed Valent Iodinepolyoxocation in (IO2)3HSO4 Previously unknown (IO2)3HSO4 is formed by action of firstly conc. H3PO4 upon HIO3 or H5IO6 at 310–330° C, and subsequently of conc. H2SO4 at room temperature. Its crystal structure (Pna21; a = 8.907(3), b = 20.464(6), c = 9.784(4) Å; Z = 8; 4354 diffractometer data; R = 0.087, Rw = 0.056) contain the novel polymeric cation (IO203nn+. Iodine(III) is coordinated square-planar by oxygen, iodine(V trigonal- pyramidal. The HSO4- anions are interconnected via hydrogen bonds. Raman and IR spectra are reported.  相似文献   

17.
Nd(S2O7)(HSO4): The First Disulfate of a Rare Earth Element Light violett single crystals of Nd(S2O7)(HSO4) have been obtained by the reaction of Nd2O3 and oleum (30% SO3) at 200 °C in sealed glass ampoules. The crystal structure (monoclinic, P21/n, Z = 4, a = 857.8(1), b = 1061.0(2), c = 972.4(1) pm, β = 99.33(2)°) contains Nd3+ in eightfold coordination of oxygen atoms which belong to three HSO4 ions and four S2O72– groups. One of the latter acts as bidentate ligand. Hydrogen bonding is observed between the H atom of the HSO4 ion and the non‐coordinating O atom of the S2O72– group.  相似文献   

18.
CoSm(SeO3)2Cl, CuGd(SeO3)2Cl, MnSm(SeO3)2Cl, CuGd2(SeO3)4 and CuSm2(SeO3)4: Transition Metal containing Selenites of Samarium and Gadolinum The reaction of CoCl2, Sm2O3, and SeO2 in evacuated silica ampoules lead to blue single crystals of CoSm(SeO3)2Cl (triclinic, , Z = 4, a = 712.3(1), b = 889.5(2), c = 1216.2(2) pm, α = 72.25(1)°, β = 71.27(1)°, γ = 72.08(1)°, Rall = 0.0586). If MnCl2 is used in the reaction light pink single crystals of MnSm(SeO3)2Cl (triclinic, , Z = 2, a = 700.8(2), b = 724.1(2), c = 803.4(2) pm, α = 86.90(3)°, β = 71.57(3)°, γ = 64.33(3)°, Rall = 0.0875) are obtained. Green single crystals of CuGd2(SeO3)2Cl (triclinic, , Z = 4, a = 704.3(4), b = 909.6(4), c = 1201.0(7) pm, α = 70.84(4)°, β = 73.01(4)°, γ = 70.69(4)°, Rall = 0.0450) form analogously in the reaction of CuCl2 and Gd2O3 with SeO2. CoSm(SeO3)2Cl contains [CoO4Cl2] octahedra, which are connected via one edge and one vertex to infinite chains. The Mn2+ ions in MnSm(SeO3)2Cl are also octahedrally coordinated by four oxygen and two chlorine ligands. The linkage of the polyhedra to chains occurs exclusively via edges. Both, the cobalt and the manganese compound show the Sm3+ ions in eight and ninefold coordination of oxygen atoms and chloride ions. In CuGd(SeO3)2Cl the Cu2+ ions are coordinated by three oxygen atoms and one Cl ion in a distorted square planar manner. One further Cl and one further oxygen ligand complete the [CuO3Cl] units yielding significantly elongated octahedra. The latter are again connected to chains via two common edges. For the Gd3+ ions coordination numbers of ?8 + 1”? and nine were found. Single crystals of the deep blue selenites CuM2(SeO3)4 (M = Sm/Gd, monoclinic, P21/c, a = 1050.4(3)/1051.0(2), b = 696.6(2)/693.5(1), c = 822.5(2)/818.5(2) pm, β = 110.48(2)°/110.53(2)°, Rall = 0.0341/0.0531) can be obtained from reactions of the oxides Sm2O3 and Gd2O3, respectively, with CuO and SeO2. The crystal structure contains square planar [CuO4] groups and irregular [MO9] polyhedra.  相似文献   

19.
Jahn‐Teller Ordering in Manganese(III) Fluoride Sulphates. I. Crystal Structures of A2[MnF3(SO4)] (A = Rb, NH4, Cs) The three isostructural fluorosulphatomanganates(III) A2[MnF3(SO4)] (A = Rb, NH4, Cs) crystallize in space group P21/c, Z = 4. Rb2[MnF3(SO4)]: a = 7.271, b = 11.091, c = 8.776Å, β = 92.26°, R = 0.033; (NH4)2[MnF3(SO4)]: a = 7.299, b = 10.157, c = 8.813Å, β = 91.51°, R = 0.025; Cs2[MnF3(SO4)]: a = 7.365, b = 11.611, c = 9.211, β = 92.30°, R = 0.029. In the chain anions [MnF3(SO4)]2— manganese(III) is coordinated by two trans‐terminal and two trans‐bridging fluorine ligands, and by the O‐atoms of two briding sulphate ligands in trans position. The Jahn‐Teller effect induces a variety of antiferrodistortive ordering resulting in distorted [MnF4O2] octahedra with alternating elongation of F—Mn—F — and O—Mn—O — axes, respectively. Thus, only asymmetrical bridges are formed.  相似文献   

20.
We synthesized melemium hydrogensulfate H3C6N7(NH2)3(HSO4)3 by reaction of melem with 70 % sulfuric acid. The crystal structure was elucidated by single‐crystal XRD (P21/n (no. 14), Z = 4, a = 10.277(2), b = 14.921(3), c = 11.771(2) Å, β = 99.24(3)°, V = 1781.5(6) Å3). H3C6N7(NH2)3(HSO4)3 is the first compound displaying a triple protonation of melem., In this contribution an overview of accessible melemium sulfates depending on the concentration of sulfuric acid is given. Two additional melemium sulfates were identified this way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号