首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of new π‐conjugated poly(aryleneethynylene)s containing a 1,3,5‐triazine unit in the main chain were synthesized in yields higher than 70% by polycondensation between dibromophenyl‐1,3,5‐triazine monomers and alkyl‐substituted diethynylbenzene (or diethynylfluorene) comonomers with Pd(PPh3)4 and CuI as catalysts in the presence of triethylamine. The polymers had a number‐average molecular weight in the range of 5000–10,000 and showed good solubility in common organic solvents. The polymers were photoluminescent both in solutions and in the solid state. X‐ray diffraction patterns of the powders of the polymers revealed that the polymers were semicrystalline. Electrochemically, the polymers appeared to be reversible under reduction. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3797–3806, 2006  相似文献   

2.
Two new π‐conjugated polymers containing 1,3,5‐triazine units in the main chain, Pa and Pb , are reported. Pa and Pb (R = H and ? OCH3, respectively) showed blue photoluminescence emissions with quantum yields of more than 50% in toluene. In the solid state, Pa and Pb showed photoluminescence maximum emission peaks at 479 and 475 nm, respectively. Electrochemically, Pa and Pb showed good stability and reversibility under repeated electrochemical reduction. The polymers had glass‐transition temperatures higher than 90 °C and had 5 wt % loss temperatures higher than 400 °C. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6554–6561, 2005  相似文献   

3.
In this study, a series of benzotriazole (BTz) and triphenylamine (TPA)‐based random copolymers; poly4‐(5‐(2‐dodecyl‐7‐methyl‐2H‐benzo[d][1,2,3]triazol‐4‐yl)thiophen‐2‐yl)‐N‐(4‐(5‐methylthiophen‐2‐yl)phenyl)‐N‐phenylaniline ( P1 ), poly4′‐(2‐dodecyl‐7‐methyl‐2H‐benzo[d][1,2,3]triazol‐4‐yl)‐N‐(4′‐methyl‐[1,1′‐biphenyl]‐4‐yl)‐N‐phenyl‐[1,1′‐biphenyl]‐4‐amine ( P2 ), and poly4‐(5′‐(2‐dodecyl‐7‐(5‐methylthiophen‐2‐yl)?2H‐benzo[d][1,2,3]triazol‐4‐yl)‐[2,2′‐bithiophen]‐5‐yl)‐N‐(4‐(5‐methylthiophen‐2‐yl)phenyl)‐N‐phenylaniline ( P3 ) were synthesized to investigate the effect of TPA unit and π‐bridges on electrochemical and spectroelectrochemical properties of corresponding polymers. The synthesis was carried out via Stille coupling for P1 , P3 , and Suzuki coupling for P2 . Electrochemical and spectral results showed that P1 has an ambipolar character, in other words it is both p‐type and n‐type dopable, whereas P2 and P3 have only p‐doping property. Effect of different π‐bridges and TPA unit on the HOMO and LUMO energy levels, switching time, and optical contrast were discussed. All polymers are promising materials for electrochromic devices. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 537–544  相似文献   

4.
Arylenevinylene‐based π‐conjugated polymers containing imidazolium cationic units in the main chain and their model compounds were synthesized and characterized in terms of optical and electrochemical properties. 9,9‐Bisoctylfluorene, 2,5‐bisdodecyloxybenzene, and 3‐dodecylthiophene were introduced as arylene units with different donor characteristics to evaluate the effect on the highest occupied molecular orbital‐lowest unoccupied molecular orbital (HOMO‐LUMO) gap energy. The UV–vis and fluorescence spectra of cationic polymers and model compounds with iodide counter anion exhibited a significant blue shift with respect to the parent neutral molecules. X‐ray single crystal analysis for model compounds revealed that the effective π‐conjugation length of cationic model compounds decreased compared to the neutral model compounds by means of twisted conformation directed by CH‐π interactions between N‐methyl groups of imidazolium and neighboring aryl units. The cyclic voltammetry measurement suggested the negative shift of LUMO levels by the conversion of imidazole to imidazolium, indicating the electron‐accepting characteristics of cationic imidazolium unit. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

5.
Three 2,3‐bis(5‐hexylthiophen‐2‐yl)‐6,7‐bis(octyloxy)‐5,8‐di(thiophen‐2‐yl)‐quinoxaline ( BTTQ )‐based conjugated polymers, namely, PF‐BTTQ ( P1 ), PP‐BTTQ ( P2 ), and PDCP‐BTTQ ( P3 ), were successfully synthesized for efficient polymer solar cells (PSCs) with electron‐rich units of fluorene and dialkoxybenzene and electron‐deficient unit dicyanobenzene, respectively. All the polymers exhibited good solubility in common organic solvents and good thermal stability. Their deep‐lying HOMO energy levels enabled them good stability in the air and the relatively low HOMO energy level assured a higher open circuit potential when used in PSCs. Bulk‐heterojunction solar cells were fabricated using these copolymers blended with a fullerene derivative as an acceptor. All of them exhibited promising performance, and the best device performance with power conversion efficiency up to 3.30% was achieved under one sun of AM 1.5 solar simulator illumination (100 mW/cm2). © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

6.
A modular and facile route has been developed to synthesize functionalized 2,5‐di(thiophen‐2‐yl)‐1‐H‐arylpyrroles from readily available starting materials. These units are compatible with various polymerization conditions and are versatile building blocks for conjugated polymers. The polymers show high thermal stability and solubility in a number of solvents. Characterization of the polymers reveals a correlation between molecular packing, controllable by polymer design, and charge carrier mobility. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1133–1139  相似文献   

7.
p–π conjugation with embedded heteroatoms offers unique opportunities to tune the electronic structure of conjugated polymers. An approach is presented to form highly electron‐deficient p–π conjugated polymers based on triarylboranes, demonstrate their n‐type behavior, and explore device applications. By combining alternating [2,4,6‐tris(trifluoromethyl)phenyl]di(thien‐2‐yl)borane (FBDT) and electron‐deficient isoindigo (IID)/pyridine‐flanked diketopyrrolopyrrole (DPPPy) units, we achieve low‐lying lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) energy levels, high electron mobilities, and broad absorptions in the visible region. All‐polymer solar cells with these polymers as electron acceptors exhibit encouraging photovoltaic performance with power conversion efficiencies of up to 2.83 %. These results unambiguously prove the n‐type behavior and demonstrate the photovoltaic applications of p–π conjugated polymers based on triarylborane.  相似文献   

8.
In this work, we report the synthesis, characterization, and application of two regioirregular naphthalenediimide (NDI)‐based alternating conjugated polymers, namely P1 and P2 , in which nitrile‐substituted moiety, 2,3‐bis(thiophen‐2‐yl)acrylonitrile and NDI moiety act as donor and acceptor unit, respectively. The two regioirregular polymers possess low‐lying LUMO energy levels of ?3.92 eV for P1 and ?3.96 eV for P2 . Both polymers possess typical dual‐band UV?Vis?NIR absorption profiles of NDI‐based polymers, and show broadened and red‐shifted absorption spectra in the solid state compared with those in solutions. Field‐effect transistor devices with top‐gate bottom‐contact configuration were used to evaluate the polymers' semiconducting properties. The two polymers exhibited promising and air‐stable ambipolar charge transport characteristics. Thin film microstructure investigations (AFM and 2D‐GIXRD) suggest both polymers formed continuous and smooth thin films, and adopted predominantly face‐on molecular packing in the solid state. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 3627–3635  相似文献   

9.
Poly(phenylene methylene) (PPM) exhibits pronounced blue fluorescence in solutions as well as in the solid state despite its non‐π‐conjugated nature. Optical spectroscopy was used to explore the characteristics and the physical origin of its unexpected optical properties, namely absorption in the 350–450 nm and photoluminescence in the 400–600 nm spectral regions. It is shown that PPM possesses two discrete optically active species, and a relatively long photoluminescence lifetime (>8 ns) in the solid‐state. Given the evidence reported herein, π‐stacking and aggregation/crystallization, as well as the formation of anthracene‐related impurities, are excluded as the probable origins of the optical properties. Instead there is sufficient evidence that PPM supports homoconjugation, that is: π‐orbital overlap across adjacent repeat units enabled by particular chain conformation(s), which is confirmed by DFT calculations. Furthermore, poly(2‐methylphenylene methylene) and poly(2,4,6‐trimethylphenylene methylene) – two derivatives of PPM – were synthesized and found to exhibit comparable spectroscopic properties, confirming the generality of the findings reported for PPM. Cyclic voltammetry measurements revealed the HOMO–LUMO gap to be 3.2–3.3 eV for all three polymers. This study illustrates a new approach to the design of light‐emitting polymers possessing hitherto unknown optical properties. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 707–720  相似文献   

10.
A new aromatic host polymer poly{[1,4‐bis(9‐decylcarbazole‐3‐yl)‐2,3,5,6‐tetrafluorobenzene‐3,3′‐diyl]‐alt‐[N‐methylisatin‐2‐one‐3,3‐diyl]} (PICzFB) containing carbazole–tetrafluorinebeneze–carbazole moiety in the π‐conjugated interrupted polymer backbone was synthesized by superacid‐catalyzed metal‐free polyhydroxyalkylation. The resulted copolymer PICzFB showed a comparatively wide band gap up to 3.32 eV and high triplet energy (ET) of 2.73 eV due to confined conjugation by the δ? C bond interrupted polymer backbone. Blue and green light‐emitting devices with PICzFB as host, FIrpic and Ir(mppy)3 as phosphorescent dopants showed the maximum luminous efficiencies of 5.0 and 27.6 cd/A, respectively. The results suggested that the strategy of incorporating bipolar unit into the π‐conjugated interrupted polymer backbone can be a promising approach to obtain host polymer with high triplet level for solution‐processed blue and green phosphorescent polymer light‐emitting diodes. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1037–1046  相似文献   

11.
The electrospray ionization collisionally activated dissociation (CAD) mass spectra of protonated 2,4,6‐tris(benzylamino)‐1,3,5‐triazine (1) and 2,4,6‐tris(benzyloxy)‐1,3,5‐triazine (6) show abundant product ion of m/z 181 (C14H13+). The likely structure for C14H13+ is α‐[2‐methylphenyl]benzyl cation, indicating that one of the benzyl groups must migrate to another prior to dissociation of the protonated molecule. The collision energy is high for the ‘N’ analog (1) but low for the ‘O’ analog (6) indicating that the fragmentation processes of 1 requires high energy. The other major fragmentations are [M + H‐toluene]+ and [M + H‐benzene]+ for compounds 1 and 6, respectively. The protonated 2,4,6‐tris(4‐methylbenzylamino)‐1,3,5‐triazine (4) exhibits competitive eliminations of p‐xylene and 3,6‐dimethylenecyclohexa‐1,4‐diene. Moreover, protonated 2,4,6‐tris(1‐phenylethylamino)‐1,3,5‐triazine (5) dissociates via three successive losses of styrene. Density functional theory (DFT) calculations indicate that an ion/neutral complex (INC) between benzyl cation and the rest of the molecule is unstable, but the protonated molecules of 1 and 6 rearrange to an intermediate by the migration of a benzyl group to the ring ‘N’. Subsequent shift of a second benzyl group generates an INC for the protonated molecule of 1 and its product ions can be explained from this intermediate. The shift of a second benzyl group to the ring carbon of the first benzyl group followed by an H‐shift from ring carbon to ‘O’ generates the key intermediate for the formation of the ion of m/z 181 from the protonated molecule of 6. The proposed mechanisms are supported by high resolution mass spectrometry data, deuterium‐labeling and CAD experiments combined with DFT calculations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
A comparative investigation was undertaken for the electrosynthesis and electrochemical properties of three different electroactive polymers having a conjugated core building block, dibenzo[a,c]phenazine. A series of monomers has been synthesized as regards to thiophene based units; thiophene, 3‐hexyl thiophene, and 3,4‐ethylenedioxythiophene. The effects of different donor substituents on the polymers' electrochemical properties were examined by cyclic voltammetry. Introducing highly electron‐donating (ethylene dioxy) group to the monomer enables solubility while also lowering the oxidation potential. The planarity of the monomer unit enhances π‐stacking and consequently lowering the Eg from 2.4 eV (PHTP) to 1.7 (PTBP). Cyclic voltammetry and spectroelectrochemical measurements revealed that 2,7‐bis(4‐hexylthiophen‐2‐yl)dibenzo[a,c]phenazine (HTP) and 2,7‐bis(2,3‐dihydrothieno[3,4‐b][1,4]dioxin‐5‐yl)dibenzo[a,c]phenazine (TBP) possessed electrochromic behavior. The colorimetry analysis revealed that while PTBP have a color change from red to blue, PHTP has yellow color at neutral state and blue color at oxidized state. Hence the presence of the phenazine derivative as the acceptor unit causes a red shift in the polymers' absorption to have a blue color. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1714–1720, 2010  相似文献   

13.
A new X‐shaped π‐conjugated monomer comprising of fluorene units and anthracene units was synthesized, and it was used to fabricate the new X‐shaped π‐conjugated polymers and investigate the properties of the new polymers. Using different molar ratios between such monomer and a fluorene monomer gave three polymers that showed higher absolute PL quantum yields than the linear polyfluorene (PF) in the solid state. After thermal annealing at 200 °C for 4 h, the linear PF showed an additional bathochromic emission at about 550 nm, whereas such red‐shifted emission was fully eliminated for the X‐shaped polymers. The electroluminescent devices based on the X‐shaped polymers with a configuration of ITO/PEDOT:PSS/polymer/LiF/Ca/Al displayed blue emission with low turn‐on voltage and high brightness. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5616–5625, 2008  相似文献   

14.
An unprecedented trinuclear heteroleptic AgI complex was isolated using a stable multidentate 2,4,6‐tris(2‐pyrimidyl)‐1,3,5‐triazine (TPymT) ligand. The obtained compound is an efficient catalyst for the direct aziridination of terminal olefins.  相似文献   

15.
3‐Dodecylthiophene end‐capped two monomers: 2,8‐bis‐(4‐dodecyl‐thiophen‐2‐yl)‐dibenzothiophene (DBT‐3DTh) and 2,8‐bis‐(4‐dodecyl‐thiophen‐2‐yl)‐dibenzofuran (DBF‐3DTh) were synthesized via Stille coupling reaction. Both monomers exhibited emission peaks at about 400 nm with fluorescence quantum yields ranging from 0.16 to 0.21. The corresponding electroactive polymers poly(2,8‐bis‐(4‐dodecyl‐thiophen‐2‐yl)‐dibenzothiophene) (PDBT‐3DTh) and poly(2,8‐bis‐(4‐dodecyl‐thiophen‐2‐yl)‐dibenzofuran) (PDBF‐3DTh) were obtained by electropolymerization method and displayed good electrochemical stability. Both polymers switched between light gray in the neutral state and blue in the oxidized state. Kinetic investigations showed that PDBT‐3DTh exhibited a maximum optical contrast (ΔT %) of 25.23% at 575 nm with the coloration efficiency (CE) of 196 cm2 C?1. However, the electrochromic properties of PDBF‐3DTh were inferior to PDBT‐3DTh. Further detailed discussions with EDOT and 3‐alkylthiophenes end‐capped DBT/DBF hybrid electrochromic polymers were comparatively studied. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1468–1478  相似文献   

16.
We have synthesized conjugated dendrimer with triazine peripheries, and their luminescence properties were investigated. The dendrimers consist of dendritic triazine wedges for electron transport, distyrylbenzene core as an emitting moiety, and t‐butyl peripheral groups for good processing properties. The dendrimers have LUMO values of about ?2.7 eV possibly because of the triazine moiety with high electron affinity. Photoluminescence study indicates that energy transfer occurs from the triazine wedges to the stilbene bridge, and finally to the core chromophore units due to a cascade decrease of bandgap from the peripheral wedge to core moiety. Therefore, the emission wavelength was determined by the structure of the core unit. The energy transfer efficiency of distyrylbenzene‐cored dendrimers was about 75 and 55% for Trz‐1GD‐DSB and Trz‐2GD‐DSB, respectively. A preliminary electroluminescence property also was investigated. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 254–263, 2006  相似文献   

17.
Two conjugated main‐chain polymers consisting of heteroarene‐fused π‐conjuagted donor moiety alternating with 4,7‐bis(5‐bromo‐4‐octylthiophen‐2‐yl)benzo[c][1,2,5]thiadiazole (P1) or 2,5‐bis(5‐bromo‐4‐octylthiophen‐2‐yl) thiazolo[5,4‐d]thiazole (P2) units have been synthesized. They are intrinsically amorphous in nature and do not exhibit crystalline melting temperatures during thermal analysis. The effect of the fused rings on the thermal, optical, electrochemical, charge transport, and photovoltaic properties of these polymers has been investigated. The polymer (P1) containing 4,7‐bis(5‐bromo‐4‐octylthiophen‐2‐yl)benzo[c][1,2,5] thiadiazole has a broad absorption extending from 300 to 600 nm with optical bandgaps as low as 2.02 eV. The HOMO levels (5.42 to 5.29 eV) are more sensitive to the choice of acceptor. The polymers were employed to fabricate organic photovoltaic cells with methanofullerene [6,6]‐phenyl C71‐butyric acid methyl ester (PC71BM). As a result, the polymer solar cell device containing P1 had the best preliminary results with an open‐circuit voltage of 0.61 V, a short‐circuit current density of 6.19 mA/cm2, and a fill factor of 0.32, offering an overall power conversion efficiency of 1.21%. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

18.
New diketopyrrolopyrrole (DPP)‐containing amorphous conjugated polymers, such as poly(3‐(5‐((9,10‐bis((4‐hexylphenyl)ethynyl)‐6‐(prop‐1‐ynyl)anthracen‐2‐yl)ethynyl) thiophen‐2‐yl)‐5‐(2‐hexyldecyl)‐2‐(2‐octyldodecyl)‐6‐(thiophen‐2‐yl)pyrrolo[3,4‐c]pyrrole‐1,4(2H,5H)‐dione) ( 4 ), and poly(3‐(5‐((2,6‐bis((4‐hexylphenyl)ethynyl)‐10‐(prop‐1‐ynyl)anthracen‐9‐yl)ethynyl)thiophen‐2‐yl)‐2,5‐bis(2‐octyldodecyl)‐6‐(thio phen‐2‐yl)pyrrolo[3,4‐c]pyrrole‐1,4(2H,5H)‐dione) ( 7 ), were successfully synthesized via Sonogashira coupling reactions under microwave conditions. Copolymer 7 , incorporating a DPP moiety at the 9,10‐position of the anthracene ring through a triple bond, showed a much lower bandgap energy (Eg = 1.81 eV) than copolymer 4 (Eg = 2.13 eV). Tuning of the molecular frontier orbital energies was achieved by only changing the anchoring position of dithiophenyl‐DPP from the 2,6‐ to the 9,10‐position in the anthracene ring. Because of the donor–acceptor (D–A) interaction and the two‐dimensional planar structure of the X‐shaped donor monomer, the resulting polymers showed good interchain π?π stacking in the thin‐film state, despite being amorphous polymers. When the newly synthesized polymer 7 was used as a semiconductor material in an organic thin‐film transistor, the best mobility of up to 0.12 cm2 V?1 s?1 (Ion/off = ~ 4.4 × 106) was observed, which is one of the highest values recorded for amorphous polymer films reported to date. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

19.
New donor–π–acceptor (D–π–A) type conjugated copolymers, poly[(4,8‐bis((2‐hexyldecyl)oxy)benzo[1,2‐b:4,5‐b′]dithiophene)‐alt‐(2,5‐bis(4‐octylthiophen‐2‐yl)thiazolo[5,4‐d]thiazole)] (PBDT‐tTz), and poly[(4,8‐bis((2‐hexyldecyl)oxy)benzo[1,2‐b:4,5‐b′]dithiophene)‐alt‐(2,5‐bis(6‐octylthieno[3,2‐b]thiophen‐2‐yl)thiazolo[5,4‐d]thiazole)] (PBDT‐ttTz) were synthesized and characterized with the aim of investigating their potential applicability to organic photovoltaic active materials. While copolymer PBDT‐tTz showed a zigzagged non‐linear structure by thiophene π‐bridges, PBDT‐ttTz had a linear molecular structure with thieno[3,2‐b]thiophene π‐bridges. The optical, electrochemical, morphological, and photovoltaic properties of PBDT‐tTz and PBDT‐ttTz were systematically investigated. Furthermore, bulk heterojunction photovoltaic devices were fabricated by using the synthesized polymers as p‐type donors and [6,6]‐phenyl‐C71‐butyric acid methyl ester as an n‐type acceptor. PBDT‐ttTz showed a high power conversion efficiency (PCE) of 5.21% as a result of the extended conjugation arising from the thienothiophene π‐bridges and enhanced molecular ordering in the film state, while PBDT‐tTz showed a relatively lower PCE of 2.92% under AM 1.5 G illumination (100 mW/cm2). © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1978–1988  相似文献   

20.
The title compound, aqua­tris­(nitrato)[2,4,6‐tris(2‐pyridyl)‐1,3,5‐triazine]samarium dihydrate, [Sm(NO3)3­(C18H12N6)­(H2O)]·­2H2O, was prepared from Sm(NO3)3·6H2O and 2,4,6‐tris(2‐pyridyl)‐1,3,5‐triazine. The metal atom is ten‐coordinate being bonded to the terdentate TPTZ ligand, three bidentate nitrates and a water mol­ecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号