共查询到20条相似文献,搜索用时 15 毫秒
1.
Sbastien Perrier Pittaya Takolpuckdee 《Journal of polymer science. Part A, Polymer chemistry》2005,43(22):5347-5393
Among the living radical polymerization techniques, reversible addition–fragmentation chain transfer (RAFT) and macromolecular design via the interchange of xanthates (MADIX) polymerizations appear to be the most versatile processes in terms of the reaction conditions, the variety of monomers for which polymerization can be controlled, tolerance to functionalities, and the range of polymeric architectures that can be produced. This review highlights the progress made in RAFT/MADIX polymerization since the first report in 1998. It addresses, in turn, the mechanism and kinetics of the process, examines the various components of the system, including the synthesis paths of the thiocarbonyl‐thio compounds used as chain‐transfer agents, and the conditions of polymerization, and gives an account of the wide range of monomers that have been successfully polymerized to date, as well as the various polymeric architectures that have been produced. In the last section, this review describes the future challenges that the process will face and shows its opening to a wider scientific community as a synthetic tool for the production of functional macromolecules and materials. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43:5347–5393, 2005 相似文献
2.
Qin Lou Matthew A. Kishpaugh Devon A. Shipp 《Journal of polymer science. Part A, Polymer chemistry》2010,48(4):943-951
The synthesis of statistical and block copolymers, consisting of monomers often used as resist materials in photolithography, using reversible addition‐fragmentation chain transfer (RAFT) polymerization is reported. Methacrylate and acrylate monomers with norbornyl and adamantyl moieties were polymerized using both dithioester and trithiocarbonate RAFT agents. Block copolymers containing such monomers were made with poly(methyl acrylate) and polystyrene macro‐RAFT agents. In addition to have the ability to control molecular weight, polydispersity, and allow block copolymer formation, the polymers made via RAFT polymerization required end‐group removal to avoid complications during the photolithography. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 943–951, 2010 相似文献
3.
Di Zhou Xiulin Zhu Jian Zhu Zhenping Cheng 《Journal of polymer science. Part A, Polymer chemistry》2008,46(18):6198-6205
Fluorescence end‐labeled polystyrene (PS) with heteroaromatic carbazole or indole group were prepared conveniently via reversible addition‐fragmentation chain transfer (RAFT) polymerization using dithiocarbamates, ethyl 2‐(9H‐carbazole‐9‐carbonothioylthio)propanoate (ECCP) and benzyl 2‐phenyl‐1H‐indole‐1‐carbodithioate (BPIC) as RAFT agents. The end functionality of obtained PS with different molecular weights was high. The steady‐state and the time‐resolved fluorescence techniques had been used to study the fluorescence behaviors of obtained end‐labeled PS. The fluorescence of dithiocarbamates resulting PS in solid powder cannot be monitored; however, they exhibited structured absorptions and emissions in solvent DMF and the fluorescence lifetimes of PS had no obvious change with molecular weights increasing. These observations suggested that the polymer chains were possibly stretched adequately in DMF, that is, the fluorescence end group was exposed into solvent molecules and little quenching of excited state occurred upon incorporation into polymer chain. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6198–6205, 2008 相似文献
4.
Jennifer M. O'Donnell Eric W. Kaler 《Journal of polymer science. Part A, Polymer chemistry》2010,48(3):604-613
A simplified kinetic model for RAFT microemulsion polymerization has been developed to facilitate the investigation of the effects of slow fragmentation of the intermediate macro‐RAFT radical, termination reactions, and diffusion rate of the chain transfer agent to the locus of polymerization on the control of the polymerization and the rate of monomer conversion. This simplified model captures the experimentally observed decrease in the rate of polymerization, and the shift of the rate maximum to conversions less than the 39% conversion predicted by the Morgan model for uncontrolled microemulsion polymerizations. The model shows that the short, but finite, lifetime of the intermediate macro‐RAFT radical (1.3 × 10?4–1.3 × 10?2 s) causes the observed rate retardation in RAFT microemulsion polymerizations of butyl acrylate with the chain transfer agent methyl‐2‐(O‐ethylxanthyl)propionate. The calculated magnitude of the fragmentation rate constant (kf = 4.0 × 101–4.0 × 103 s?1) is greater than the literature values for bulk RAFT polymerizations that only consider slow fragmentation of the macro‐RAFT radical and not termination (kf = 10?2 s?1). This is consistent with the finding that slow fragmentation promotes biradical termination in RAFT microemulsion polymerizations. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 604–613, 2010 相似文献
5.
David S. Germack Karen L. Wooley 《Journal of polymer science. Part A, Polymer chemistry》2007,45(17):4100-4108
Until recently, the primary living radical polymerization method available for preparing polyisoprene was nitroxide‐mediated radical polymerization, with reversible addition‐fragmentation chain transfer polymerization being applied only in a few cases within the last couple of years. We report here the preparation of polyisoprene by RAFT in the presence of the trithiocarbonate transfer agent S‐1‐dodecyl‐S′‐(r,r′‐dimethyl‐r′′‐acetic acid)trithiocarbonate and t‐butyl peroxide as the radical initiator. The kinetics of this polymerization at an optimized temperature of 125 °C and radical initiator concentration of 0.2 equiv relative to transfer agent have been studied in triplicate and demonstrate the living nature of the polymerization. These conditions resulted in polymers with narrow polydispersity indices, on the order of 1.2, with monomer conversions up to 30%. Retention of chain‐end functionality was demonstrated by polymerizing styrene as a second block from a polyisoprene macrotransfer agent, resulting in a block copolymer presenting a unimodal gel permeation chromatogram, and narrow molecular weight distribution. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4100–4108, 2007 相似文献
6.
Reversible addition‐fragmentation chain transfer polymerization of vinyl acetate under high pressure 下载免费PDF全文
Jing Chen Xiaoning Zhao Lifen Zhang Zhenping Cheng Xiulin Zhu 《Journal of polymer science. Part A, Polymer chemistry》2015,53(12):1430-1436
In this work, high molecular weight polyvinyl acetate (PVAc) (Mn,GPC = 123,000 g/mol, Mw/Mn = 1.28) was synthesized by reversible addition‐fragmentation chain transfer polymerization (RAFT) under high pressure (5 kbar), using benzoyl peroxide and N,N‐dimethylaniline as initiator mediated by (S)‐2‐(ethyl propionate)‐(O‐ethyl xanthate) (X1) at 35 °C. Polymerization kinetic study with RAFT agent showed pseudo‐first order kinetics. Additionally, the polymerization rate of VAc under high pressure increased greatly than that under atmospheric pressure. The “living” feature of the resultant PVAc was confirmed by 1H NMR spectroscopy and chain extension experiments. Well‐defined PVAc with high molecular weight and narrow molecular weight distribution can be obtained relatively fast by using RAFT polymerization at 5 kbar. © 2015 Wiley Periodicals, Inc. J. Polym. Sci. Part A: Polym. Chem. 2015 , 53, 1430–1436 相似文献
7.
Shrinivas Venkataraman Karen L. Wooley 《Journal of polymer science. Part A, Polymer chemistry》2007,45(23):5420-5430
Reversible addition–fragmentation chain transfer (RAFT) polymerization has emerged as one of the important living radical polymerization techniques. Herein, we report the polymerization of di(ethylene glycol) 2‐ethylhexyl ether acrylate (DEHEA), a commercially‐available monomer consisting of an amphiphilic side chain, via RAFT by using bis(2‐propionic acid) trithiocarbonate as the chain transfer agent (CTA) and AIBN as the radical initiator, at 70 °C. The kinetics of DEHEA polymerization was also evaluated. Synthesis of well‐defined ABA triblock copolymers consisting of poly(tert‐butyl acrylate) (PtBA) or poly(octadecyl acrylate) (PODA) middle blocks were prepared from a PDEHEA macroCTA. By starting from a PtBA macroCTA, a BAB triblock copolymer with PDEHEA as the middle block was also readily prepared. These amphiphilic block copolymers with PDEHEA segments bearing unique amphiphilic side chains could potentially be used as the precursor components for construction of self‐assembled nanostructures. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5420–5430, 2007 相似文献
8.
Di Zhou Xiulin Zhu Jian Zhu Haishu Yin 《Journal of polymer science. Part A, Polymer chemistry》2005,43(20):4849-4856
Polymerizations of styrene with azobisisobutyronitrile initiation or thermal initiation have been performed in the presence of dithiocarbamates with different N‐groups, that is, benzyl 4,5‐diphenyl‐1H‐imidazole‐1‐carbodithioate ( 2a ), benzyl 1H‐1,2,4‐triazole‐1‐carbodithioate ( 2b ), benzyl indole‐1‐carbodithioate ( 2c ), benzyl 2‐phenyl‐indole‐1‐carbodithioate ( 2d ), benzyl phenothiazine‐10‐carbodithioate ( 2e ), benzyl 9H‐carbazole‐9‐carbodithioate ( 2f ), and benzyl dibenzo[b,f]azepine‐5‐carbodithioate ( 2g ). The results show that the structure of the N‐group of dithiocarbamates has significant effects on the activity of dithiocarbamates for the polymerization of styrene. 2a , 2b , 2c , 2d , and 2f are effective reversible addition–fragmentation chain transfer (RAFT) agents for the RAFT polymerization of styrene, and the polymerizations have good living characteristics. However, in the cases of 2e and 2g , the obtained polymers have uncontrolled molecular weights and broad molecular weight distributions. The polymerization rate is markedly influenced by the conjugation structure of the N‐group of the dithiocarbamate, and the polymerization rate of 2b is greater than that of 2a . For 2b , the rate of polymerization seems independent of the RAFT agent concentration. However, a significant retardation in the rate of polymerization can be observed in the case of 2c . 2d is more effective than 2c , and the substitution group of phenyl on this dithiocarbamate has obvious effects on the effectiveness of the controlled polymerization of styrene. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4849–4856, 2005 相似文献
9.
Lei Feng Kevin A. Cavicchi Bryan C. Katzenmeyer Chrys Wesdemiotis 《Journal of polymer science. Part A, Polymer chemistry》2011,49(23):5100-5108
The synthesis of chain‐end sulfonated polystyrene [PS (ω‐sulfonated PS)] by reversible addition fragmentation chain transfer (RAFT) polymerization followed by postpolymerization modification was investigated by two methods. In the first method, the polymer was converted to a thiol‐terminated polymer by aminolysis. This polymer was then sulfonated by oxidation of the thiol end‐group with m‐chloroperoxybenzoic acid (m‐CPBA) to produce a sulfonic acid end‐group. In the second method, the RAFT‐polymerized polymer was directly sulfonated by oxidation with m‐CPBA. After purification by column chromatography, ω‐sulfonated PS was obtained by both methods with greater than 95% end‐group functionality as measured by titration. The sulfonic acid end‐group could be neutralized with various ammonium or imidazolium counter ions through acid–base or ionic metathesis reactions. The effect of the ionic end‐groups on the glass transition temperature of the PS was found to be consistent with what is known for PS ionomers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011 相似文献
10.
Qunfeng Liu Ping Zhang Mangeng Lu 《Journal of polymer science. Part A, Polymer chemistry》2005,43(12):2615-2624
The comb‐type grafted hydrogels poly(N‐isopropylacrylamide)‐g‐poly(N‐isopropylacrylamide) (PNIPAM‐g‐PNIPAM) and poly(acrylic acid)‐g‐poly(N‐isopropylacrylamide) (PAAc‐g‐PNIPAM) were prepared by reversible addition–fragmentation chain transfer polymerization. A macromolecular chain‐transfer agent was prepared first. Then, hydrogels were obtained by a reaction with a comonomer (N‐isopropylacrylamide or acrylic acid) in the presence of N,N‐methylenebisacrylamide as a crosslinker. The equilibrium swelling ratios and the swelling and deswelling kinetics of PNIPAM‐g‐PNIPAM were measured. The effects of the chain length and amount on the swelling behavior were investigated. The deswelling mechanism was illustrated. Meanwhile, the PAAc‐g‐PNIPAM hydrogel was used to confirm the versatility of this novel method. It was prepared in an alcoholic medium, whereas hydrogen‐bonding complexes formed in 1,4‐dioxane, which was chosen as the reaction medium for the PNIPAM‐g‐PNIPAM hydrogel. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2615–2624, 2005 相似文献
11.
Christopher Barner‐Kowollik Philipp Vana John F. Quinn Thomas P. Davis 《Journal of polymer science. Part A, Polymer chemistry》2002,40(8):1058-1063
A novel experimental procedure is presented that allowed probing of reversible addition–fragmentation chain‐transfer (RAFT) free‐radical polymerizations for long‐lived species. The new experimental sequence consisted of gamma irradiation of a mixture of initial RAFT agent (cumyl dithiobenzoate) and monomer at ambient temperature, a subsequent predetermined waiting period without initiation source also at ambient temperature, and then heating of the reaction mixture to a significantly higher temperature. After each sequence step, the monomer conversion and molecular weight distribution were determined, indicating that controlled polymer formation occurs only during the heating period. The results indicated that stable intermediates (either radical or nonradical in nature) are present in such experiments because thermal self‐initiation of the monomer can be excluded as the reason for polymer formation. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1058–1063, 2002 相似文献
12.
Xiao‐Hui Liu Gui‐Bao Zhang Xian‐Feng Lu Jing‐Yu Liu Ding Pan Yue‐Sheng Li 《Journal of polymer science. Part A, Polymer chemistry》2006,44(1):490-498
Reversible addition–fragmentation chain transfer polymerization has been successfully applied to polymerize acrylonitrile with dibenzyl trithiocarbonate as the chain‐transfer agent. The key to success is ascribed to the improvement of the interchange frequency between dormant and active species through the reduction of the activation energy for the fragmentation of the intermediate. The influence of several experimental parameters, such as the molar ratio of the chain‐transfer agent to the initiator [azobis(isobutyronitrile)], the molar ratio of the monomer to the chain‐transfer agent, and the monomer concentration, on the polymerization kinetics and the molecular weight as well as the polydispersity has been investigated in detail. Matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry and 1H NMR analyses have confirmed the chain‐end functionality of the resultant polymer. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 490–498, 2006 相似文献
13.
Chunzhao Li Brian C. Benicewicz 《Journal of polymer science. Part A, Polymer chemistry》2005,43(7):1535-1543
A series of new reversible addition–fragmentation chain transfer (RAFT) agents with cyanobenzyl R groups were synthesized. In comparison with other dithioester RAFT agents, these new RAFT agents were odorless or low‐odor, and this made them much easier to handle. The kinetics of methyl methacrylate radical polymerizations mediated by these RAFT agents were investigated. The polymerizations proceeded in a controlled way, the first‐order kinetics evolved in a linear fashion with time, the molecular weights increased linearly with the conversions, and the polydispersities were very narrow (~1.1). A poly[(methyl methacrylate)‐block‐polystyrene] block copolymer was prepared (number‐average molecular weight = 42,600, polydispersity index = 1.21) from a poly(methyl methacrylate) macro‐RAFT agent. These new RAFT agents also showed excellent control over the radical polymerization of styrenics and acrylates. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1535–1543, 2005 相似文献
14.
M. N. Nguyen C. Bressy A. Margaillan 《Journal of polymer science. Part A, Polymer chemistry》2005,43(22):5680-5689
The reversible addition–fragmentation chain transfer (RAFT) polymerization of a hydrolyzable monomer (tert‐butyldimethylsilyl methacrylate) with cumyl dithiobenzoate and 2‐cyanoprop‐2‐yl dithiobenzoate as chain‐transfer agents was studied in toluene solutions at 70 °C. The resulting homopolymers had low polydispersity (polydispersity index < 1.3) up to 96% monomer conversion with molecular weights at high conversions close to the theoretical prediction. The profiles of the number‐average molecular weight versus the conversion revealed controlled polymerization features with chain‐transfer constants expected between 1.0 and 10. A series of poly(tert‐butyldimethylsilyl methacrylate)s were synthesized over the molecular weight range of 1.0 × 104 to 3.0 × 104, as determined by size exclusion chromatography. As strong differences of hydrodynamic volumes in tetrahydrofuran between poly(methyl methacrylate), polystyrene standards, and poly(tert‐butyldimethylsilyl methacrylate) were observed, true molecular weights were obtained from a light scattering detector equipped in a triple‐detector size exclusion chromatograph. The Mark–Houwink–Sakurada parameters for poly(tert‐butyldimethylsilyl methacrylate) were assessed to obtain directly true molecular weight values from size exclusion chromatography with universal calibration. In addition, a RAFT agent efficiency above 94% was confirmed at high conversions by both light scattering detection and 1H NMR spectroscopy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5680–5689, 2005 相似文献
15.
Prakash J. Saikia Jung Min Lee Byung H. Lee Soonja Choe 《Journal of polymer science. Part A, Polymer chemistry》2007,45(3):348-360
Dispersion polymerization was applied to the controlled/living free‐radical polymerization of styrene with a reversible addition–fragmentation chain transfer (RAFT) polymerization agent in the presence of poly(N‐vinylpyrrolidone) and 2,2′‐azobisisobutyronitrile in an ethanol medium. The effects of the polymerization temperature and the postaddition of RAFT on the polymerization kinetics, molecular weight, polydispersity index (PDI), particle size, and particle size distribution were investigated. The polymerization was strongly dependent on both the temperature and postaddition of RAFT, and typical living behavior was observed when a low PDI was obtained with a linearly increased molecular weight. The rate of polymerization, molecular weight, and PDI, as well as the final particle size, decreased with an increased amount of the RAFT agent in comparison with those of traditional dispersion polymerization. Thus, the results suggest that the RAFT agent plays an important role in the dispersion polymerization of styrene, not only reducing the PDI from 3.34 to 1.28 but also producing monodisperse polystyrene microspheres. This appears to be the first instance in which a living character has been demonstrated in a RAFT‐mediated dispersion polymerization of styrene while the colloidal stability is maintained in comparison with conventional dispersion polymerization. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 348–360, 2007 相似文献
16.
Jian Zhu Xiulin Zhu Zhengbiao Zhang Zhenping Cheng 《Journal of polymer science. Part A, Polymer chemistry》2006,44(23):6810-6816
Reversible addition–fragmentation chain transfer (RAFT) polymerizations of styrene under microwave irradiation (MI), with or without azobisisobutyronitrile, were successfully carried out in bulk at 72 and 98 °C, respectively. The results showed that the polymerizations had living/controlled features, and there was a significant enhancement of the polymerization rates under MI in comparison with conventional heating (CH) under the same conditions. The polymer structures were characterized with 1H and 13C NMR. The results showed the same structure for both polymers obtained by MI and CH. Successful chain‐extension experimentation further demonstrated the livingness of the RAFT polymerization carried out under MI. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6810‐6816, 2006 相似文献
17.
Robert Rotzoll Philipp Vana 《Journal of polymer science. Part A, Polymer chemistry》2008,46(23):7656-7666
Reversible addition‐fragmentation chain transfer (RAFT) polymerization was used to produce poly(methyl acrylate) (pMA) loops grafted onto silica nanoparticles using doubly anchored bifunctional RAFT agents 1,4‐bis(3′‐trimethoxysilylpropyltrithiocarbonylmethyl)benzene (Z‐group approach) and 1,6‐bis(o,p‐2′‐trimethoxysilylethylbenzyltrithiocarbonyl)hexane (R‐group approach) as mediators. In both cases, molecular weights of the resulting surface‐confined polymer loops increased with monomer conversion, whereas the grafting density was significantly higher in the case of the R‐group supported RAFT polymerization due to mechanistic differences of the RAFT process at the surface. This result was evident from thermogravimetric analysis and supported by scanning electron microscopy. Polymer loops with molecular weights up to 53,000 g mol?1 were accessible with polydispersities of about 2.0 without and 1.5 with the addition of free RAFT agent. UV signals of the detached pMA loops measured via size exclusion chromatography were shifted to higher molecular weights compared with the corresponding RI signals, indicating branching reactions caused by the close proximity of growing radicals and polymer at the surface of the silica nanoparticles. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7656–7666, 2008 相似文献
18.
Kevin D. Hermanson Shiyong Liu Eric W. Kaler 《Journal of polymer science. Part A, Polymer chemistry》2006,44(20):6055-6070
Reversible addition–fragmentation chain transfer (RAFT) polymerization is a useful technique for the formation of polymers with controlled architectures and molecular weights. However, when used in the polymerization of microemulsions, RAFT agents are only able to control the polymer molecular weight only at high RAFT concentrations. Here, a kinetic model describing RAFT microemulsion polymerizations is derived that predicts the reaction rates, molecular weight polydispersities, and particle size. The model predicts that at low RAFT concentrations, the RAFT agent will be consumed early in the reaction and that this will result in uncontrolled polymerization in particles nucleated late in the reaction. The higher molecular weight polydispersity that is observed in RAFT microemulsion polymerizations is the result of this uncontrolled polymerization. The model also predicts a shift in the conversion at which the maximum reaction rate occurs and a decrease in the particle size with increasing RAFT concentration. Both of these trends are also consistent with those observed experimentally. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6055–6070, 2006 相似文献
19.
Yiyu Zhan Zhengbiao Zhang Xiangqiang Pan Jian Zhu Nianchen Zhou Xiulin Zhu 《Journal of polymer science. Part A, Polymer chemistry》2013,51(7):1656-1663
A cyclic selenium‐based reversible addition‐fragmentation chain transfer (RAFT) agent, 5,5‐dimethyl‐3‐phenyl‐2‐selenoxo‐1,3‐selenazolidin‐4‐one (RAFT‐Se), was synthesized and utilized in the RAFT polymerizations of vinyl acetate (VAc). Its analog, 5,5‐dimethyl‐3‐phenyl‐2‐thioxothiazolidin‐4‐one (RAFT‐S), was also used in RAFT polymerizations for comparison under identical conditions. The RAFT polymerizations of VAc with RAFT‐Se were moderately controlled evidenced by the increase of molecular weights with conversion, despite the slightly high Mw/Mn (less than 1.90), whereas the molecular weights were poorly controlled in the presence of RAFT‐S (2.00 < Mw/Mn < 2.30). Thanks to its unusual cyclic structure of RAFT‐Se, one or more RAFT‐Se species was incorporated into the resultant poly(VAc) as revealed by the results of cleavage of polymer and atomic absorption spectroscopy. Considering the biorelated functions of both poly(VAc) and Se element, this work undoubtedly provided a successful methodology of how to incorporate high content of Se into a molecular weight controlled poly(VAc). © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013 相似文献
20.
Yong‐Keng Goh Michael R. Whittaker Michael J. Monteiro 《Journal of polymer science. Part A, Polymer chemistry》2005,43(21):5232-5245
The use of phenyldithioacetic acid (PDA) in homopolymerizations of styrene or methyl acrylate produced only a small fraction of chains with dithioester end groups. The polymerizations using 1‐phenylentyl phenyldithioacetate (PEPDTA) and PDA in the same reaction showed that PDA had little or no influence on the rate or molecular weight distribution even when a 1:1 ratio is used. The mechanistic pathway for the polymerizations in the presence of PDA seemed to be different for each monomer. Styrene favors addition of styrene to PDA via a Markovnikov type addition to form a reactive RAFT agent. The polymer was shown by double detection SEC to contain dithioester end groups over the whole distribution. This polymer was then used in a chain extension experiment and the Mn was close to theory. A unique feature of this work was that PDA could be used to form a RAFT agent in situ by heating a mixture of styrene and PDA for 24 h at 70 °C and then polymerizing in the presence of AIBN to give a linear increase in Mn and low values of PDI (<1.14). In the case of the polymerization of MA with PDA, the mechanism was proposed to be via degradative chain transfer. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5232–5245, 2005 相似文献