首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Though preparation procedures of heterogeneous Ziegler‐Natta catalysts for propylene polymerization are sophisticated, it is uncertain whether the nature of the active sites is similar or different for different preparation procedures. In this study, the effects of preparation procedures on the nature of the active sites were investigated by stopped‐flow polymerization in combination with microstructure analysis of polymers. Both basic and advanced types of catalysts showed the same two kinds of isospecific active site, which indicated little influence of the preparation method on the active site structure. On the contrary, the ratios of the two kinds of isospecific sites were not the same, resulting in variation of average polymer properties.

  相似文献   


2.
A Ziegler‐Natta/metallocene hybrid catalyst was produced and utilized in the polymerization of ethylene with the aim of producing bimodal polyethylene. The MgCl2 adduct was prepared by a melt quenching method and Cp2ZrCl2 and TiCl4 catalysts were loaded, respectively, after treating the surface with TiBAl. The polymerization kinetics involved an induction period, followed by fragmentation and expansion of particles. SEM micrographs revealed that the spherical morphology was retained through the initial mild reaction conditions of induction period. The polymers produced showed bimodal molecular weight distribution patterns, suggesting that both components of the hybrid catalyst were active over the support.

  相似文献   


3.
The very early stages of gas‐phase ethylene polymerization on an SiO2‐supported Ziegler–Natta catalyst were studied with the help of a short‐stop reactor. The short‐stop‐reactor‐based technique was useful in studying nascent polymerization, providing insights at very short, controlled times into important phenomena regarding catalyst fragmentation and the activation and deactivation of catalyst sites that take place during the very early stages of the reaction. Experimental results indicate that the growth of the polymer chains occurs at unsteady conditions during the initial stages of the polymerization. Hydrogen has a strong influence on the initial kinetics, leading to a significant decrease of polymerization activity. Polymer crystallinity increases with the reaction time, probably due to the formation of long chains with a high degree of crystallinity.

  相似文献   


4.
The synthesis of a series of neodymium complexes supported on modified silica is reported. In an initial step the silanol groups were masked by a Lewis acid (BCl3, AlCl3, TiCl4, ZrCl4, SnCl4, SbCl5, HfCl4), and then a soluble arene complex Nd(η6‐C6H5Me)(AlCl4)3 formed in situ was reacted with the modified silica. The supported complexes are active and highly stereospecific for butadiene polymerization; 1,4‐cis insertion is superior by 99%. The catalyst based on a treatment of silica with BCl3 is the most efficient.  相似文献   

5.
A simplified kinetic scheme of eythylene/α‐olefin copolymerization has been developed by adding reactions responsible for the unusual kinetic behavior to a general mechanism. The estimation of rate constants has been simplified by making physically meaningful initial guesses. Rate constants affecting yield, MWD and comonomer content have been estimated separately. Experiments were designed to investigate the effects of each rate constant independently. The obtained rate constants show that the sites which are responsible for formation of short chains with higher 1‐butene content are more active at the beginning of polymerization, while the sites which are responsible for formation of longer chains with lower 1‐butene units are more active at the final stages of polymerization.

  相似文献   


6.
Deconvolution of the MWD of a polymer produced by multi‐site catalysts into independent Flory modes is the first step in modeling the polymerization process. A new deconvolution procedure for GPC data is developed that does not require an a priori assumption concerning the nature of the discrete distribution and can be used with a continuous distribution. The MWD measured via GPC is a linear function of the individual catalytic sites, but it is numerically ill‐conditioned, preventing direct inversion of the GPC data. Tikhonov regularization has been developed to uniquely invert the MWD. Applying the regularizing method to a polyethylene produced via a Ziegler‐Natta catalyst, seven discrete sites were found, and the kinetic constant ratios were determined for each of these sites.

  相似文献   


7.
Summary: A morphological investigation was carried out on different Ziegler‐Natta catalysts during the early stages of propylene homo‐ and propylene‐ethylene copolymerization. For similar polymerization conditions, but dependent on the nature of the catalysts, fragmentation occurs layer‐by‐layer or instantaneously into a large amount of small pieces. However, the incorporation of comonomer ethylene slows down the fragmentation progress. This is believed to be the result of the higher mobility of the just formed propylene‐ethylene copolymer molecules at the active sites.

SEM images of the cross‐sectional morphology of polymer particles from catalyst‐I.  相似文献   


8.
In propylene polymerization with MgCl2‐supported Ziegler‐Natta catalysts, it is known that the reduction of TiCl4 with alkylaluminum generates Ti3+ active species, and at the same time, leads to the growth of TiClx aggregates. In this study, the aggregation states of the Ti species were controlled by altering the Ti content in a TiCl3/MgCl2 model catalyst prepared from a TiCl3 · 3C5H5N complex. It is discovered that all the Ti species become isolated mononuclear with a highly aspecific feature below 0.1 wt.‐% of the Ti content, and that the isolated aspecific Ti species are more efficiently converted into highly isospecific ones by the addition of donors than active sites in aggregated Ti species.

  相似文献   


9.
Hydrogen is a very effective chain‐transfer agent in propylene polymerization reactions with Ti‐based Ziegler–Natta catalysts. However, measurements of the hydrogen concentration effect on the molecular weight of polypropylene prepared with a supported TiCl4/dibutyl phthalate/MgCl2 catalyst show a peculiar effect: hydrogen efficiency in the chain transfer significantly decreases with concentration, and at very high concentrations, hydrogen no longer affects the molecular weight of polypropylene. A detailed analysis of kinetic features of chain‐transfer reactions for different types of active centers in the catalyst suggests that chain transfer with hydrogen is not merely the hydrogenolysis reaction of the Ti? C bond in an active center but proceeds with the participation of a coordinated propylene molecule. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1899–1911, 2002  相似文献   

10.
Results of propene polymerization in the presence of two known octahedral C2‐symmetric Zr complexes bearing tetradentate [ONNO]‐type ligands are reported for the first time. Depending on the steric hindrance at the active metal, isotactic site‐controlled or weakly syndiotactic chain‐end‐controlled polymers were obtained, in both cases via highly regioselective 1,2 (primary) monomer insertion. In this respect, the complexes mimic the behavior of the active Ti species on the surface of the heterogeneous Ziegler‐Natta catalysts of which they might represent good structural models.  相似文献   

11.
In this study, novel carrier materials were synthesized by addition of metal dihalide compounds in the synthesis reaction of magnesium diethoxide using metallic magnesium, ethanol and iodine. Poly(propylene) polymerizations were then investigated with the MgCl2‐supported TiCl4 catalysts using these carrier materials. As results, magnesium diethoxide with extremely large particle sizes and spherical shapes were obtained and the angles of repose of PP particles obtained by using their catalysts as a flowability index showed high values. Furthermore, in order to confirm key points for excellent catalyst performance from detailed characterizations, SEM images, compositions and WAXS were measured.

  相似文献   


12.
A simplified steady‐state model has been developed to predict molecular weight distributions and average compositions of ethylene‐hexene copolymers produced using heterogeneous Ziegler‐Natta catalysts in gas‐phase reactors. The model uses a simplified reaction scheme to limit the number of parameters that must be estimated. The number of parameters is further reduced by assuming that different types of active sites share common rate constants for some reactions. Estimates of kinetic parameters are obtained using deconvolution analysis of industrial copolymer samples produced using a variety of isothermal steady‐state operating conditions. The parameter estimates should prove useful as initial guesses for future parameter estimation in a non‐isothermal model.

  相似文献   


13.
A method for the preparation of well‐defined crystallites of MgCl2‐supported Ziegler‐Natta catalysts on Si wafers has been developed. This has been achieved by the spin‐coating of a MgCl2 solution onto a flat Si wafer, followed by controlled crystal growth to give well‐defined MgCl2 · nEtOH crystallites. The growth of the crystallites on the flat silica facilitates their characterization using electron and scanning probe microscopy. The relative proportions of 120° and 90° edge angles indicate the preference for the formation of a particular crystallite face for the MgCl2. Polyethylene has been identified to be formed on the lateral faces of the crystallite.

  相似文献   


14.
Complete exfoliation of montmorillonite during Ti‐based Ziegler‐Natta polymerization of ethylene has been successfully carried out by using montmorillonite (MMT‐OH) modified with intercalation agents containing hydroxyl groups. Hydroxyl groups in intercalation agents offer facile reactive sites for anchoring catalysts in between silicate layers. Comparison of exfoliation characteristics between MMT‐OH and non‐intercalated montmorillonite showed that the feasibility of exfoliation during ethylene polymerization was highly dependent on the catalyst fixation method.  相似文献   

15.
Dinucleation of TiCl4 on the MgCl2 (100) surface has been conventionally believed as the origin of the stereospecificity of heterogeneous Ziegler‐Natta catalysts for propylene polymerization, while the MgCl2 (110) surface has been regarded as non‐stereoselective in the absence of organic donors. Based on periodic density functional calculations, we propose a new isospecific Ti dinuclear species on the MgCl2 (110) surface, which is formed as a result of reduction of Ti from 4+ to 3+. The new species closely resembles the dinuclear species on the (100) surface, but two Ti ions are obliquely stacked along the (110) surface through Cl bridges. The results address the importance of the reduction and re‐distribution of surface Ti species after contacting with cocatalysts in considering the origin of the stereospecificity.

  相似文献   


16.
Two different modeling techniques, the method of moments and Monte Carlo simulation, were compared for propylene polymerization with coordination catalysts including a new mechanistic step, site transformation by electron donors. We used the models to show how the molecular weight and tacticity distributions of several poly(propylene) chain populations were affected by changing the concentration of hydrogen, electron donor, and propylene in the reactor, under steady‐state or dynamic operating conditions. The Monte Carlo simulation describes the molecular weight and tacticity distributions for the whole polymer and chain populations with distinct microstructural characteristics. We have also applied the Monte Carlo model to simulate the pentad sequence distributions and its equivalent 13C NMR spectra.

  相似文献   


17.
The effect of prepolymerization on ethylene homopolymerization and ethylene/1‐hexene copolymerization with a commercial TiCl4/MgCl2 catalyst was investigated and the apparent homo‐ and copolymerization rate constants were estimated by varying polymerization temperature, pressure, time, and 1‐hexene/ethylene molar ratio during the prepolymerization. The apparent rate constants for activation, propagation, and deactivation depend on the prepolymerization conditions, showing that the prepolymerization stage strongly regulates the behavior of the catalyst in the main polymerization. Interestingly, the surface morphology of the prepolymer particles correlates to and explains these changes in polymerization kinetics behavior.

  相似文献   


18.
A fragmentable support material for Ziegler–Natta catalysts is presented based on micrometer‐sized aggregates of polystyrene nanoparticles. Hydroxyl anchoring groups are introduced by copolymerization of hydroxymethylstyrene in emulsion process to immobilize the catalysts. The catalytic activity in ethylene slurry polymerizations is found to be directly correlated to the hydroxyl group content of the supports. Furthermore, the fragmentation behavior of dye‐labeled support aggregates into the initial nanoparticles is demonstrated using laser scanning confocal fluorescence microscopy as a nondestructive method. These supported catalysts fulfill two important design criteria, high fragmentability and high catalyst loading, and produce high‐density polyethylene with medium molecular weight distributions (MWDs = 3–4). These values lie between those obtained using single‐site metallocene‐based (narrow MWD < 3) or inorganic supported multi‐site Ziegler–Natta‐based (broad MWD = 4–12) polymerizations without the need of blending. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 15–22  相似文献   

19.
20.
The effect of type and concentration of external donor and hydrogen concentration on oligomer formation and chain end distribution were studied. Bulk polymerization of propylene was carried out with two different Ziegler‐Natta catalysts at 70 °C, one a novel self‐supported catalyst (A) and the other a conventional MgCl2‐supported catalyst (B) with triethyl aluminum as cocatalyst. The external donors used were dicyclopentyl dimethoxy silane (DCP) and cyclohexylmethyl dimethoxy silane (CHM). The oligomer amount was shown to be strongly dependent on the molecular weight of the polymer. Catalyst A gave approximately 50 % lower oligomer content than catalyst B due to narrower molecular weight distribution in case of catalyst A. More n‐Bu‐terminated chain ends were found for catalyst A indicating more frequent 2,1 insertions. Catalyst A also gave more vinylidene‐terminated oligomers, suggesting that chain transfer to monomer, responsible for the vinylidene chain ends, was a more important chain termination mechanism for this catalyst, especially at low hydrogen concentration. Low site selectivity, due to low external donor concentration or use of a weak external donor (CHM), was also found to increase formation of vinylidene‐terminated oligomers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 351–358, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号