首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel alternating copolymers comprising bis‐ calix[4]arene‐p‐phenylene ethynylene and m‐phenylene ethynylene units ( CALIX‐m‐PPE ) were synthesized using the Sonogashira‐Hagihara cross‐coupling polymerization. Good isolated yields (60–80%) were achieved for the polymers that show Mn ranging from 1.4 × 104 to 5.1 × 104 gmol?1 (gel permeation chromatography analysis), depending on specific polymerization conditions. The structural analysis of CALIX‐m‐PPE was performed by 1H, 13C, 13C–1H heteronuclear single quantum correlation (HSQC), 13C–1H heteronuclear multiple bond correlation (HMBC), correlation spectroscopy (COSY), and nuclear overhauser effect spectroscopy (NOESY) in addition to Fourier transform‐Infrared spectroscopy and microanalysis allowing its full characterization. Depending on the reaction setup, variable amounts (16–45%) of diyne units were found in polymers although their photophysical properties are essentially the same. It is demonstrated that CALIX‐m‐PPE does not form ground‐ or excited‐state interchain interactions owing to the highly crowded environment of the main‐chain imparted by both calix[4]arene side units which behave as insulators inhibiting main‐chain π–π staking. It was also found that the luminescent properties of CALIX‐m‐PPE are markedly different from those of an all‐p‐linked phenylene ethynylene copolymer ( CALIX‐p‐PPE ) previously reported. The unexpected appearance of a low‐energy emission band at 426 nm, in addition to the locally excited‐state emission (365 nm), together with a quite low fluorescence quantum yield (? = 0.02) and a double‐exponential decay dynamics led to the formulation of an intramolecular exciplex as the new emissive species. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

2.
Summary: A novel poly(p‐phenylene vinylene) (PPV)/poly(p‐phenylene ethynylene) (PPE) block‐copolymer was synthesized by a cross‐coupling polycondensation with Pd(PPh3)2Cl2 and a phase‐transfer catalyst, and was confirmed by 1H NMR and IR spectroscopy and elemental analysis. The thermal, electrochemical, and photoluminescent properties of the new copolymer have been investigated. The incorporation of triple bonds into the cyano‐substituted PPV (CN‐PPV) backbone leads to higher oxidation and reduction potentials than poly(2‐methoxy‐5‐(2‐ethylhexyloxy)‐p‐phenylene vinylene) (MEH‐PPV) and CN‐PPV, potentially making the copolymer a good electron‐transporting material for use in a light‐emitting‐diode device.

The cyclic voltammogram of the novel poly(p‐phenylene vinylene) (PPV)/poly(p‐phenylene ethynylene) (PPE) block‐copolymer synthesized here.  相似文献   


3.
A series of rigid poly(p‐phenylene ethynylene)s ( PPE1 – PPE4 ) with biphenyl‐ ( M1–M3 ) and phenyl‐ ( M4 ) side groups is prepared from appropriately functionalized monomers. Herein, the solution and solid state absorption studies show the polymers have adopted twisted and rigid conformations, as supported by deep HOMO energy levels (?5.76 to ?5.81 eV). The absorption maxima of PPE1–PPE3 are shifted to shorter wavelength (λmax = 375–381 nm) as compared to linear poly(p‐phenylene ethynylene)s (446 nm), implying a nonplanar conformation. The self‐assembly of polymers into fibers is examined using scanning electron microscopy. The fibers are not observed in PPE4 with short phenyl side group, suggesting the important role of the interplay between rigidity, position, and size of the side chains toward the formation of fibers. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3652–3662  相似文献   

4.
A systematic study on the influence of the alkyl side‐chain length of C60 based fullerene derivatives in polymer solar cells based on an anthracene‐containing poly(p‐phenylene‐ethynylene)‐alt‐poly(p‐phenylene‐vinylene) (PPE‐PPV) copolymer (AnE‐PV) is reported. It is shown that the alkyl side‐chain length of the fullerene derivative strongly correlates with the individual photovoltaic parameters. The most pronounced dependence on the side‐chain length is found for the fill factor, spanning the range between 50–72%, which dominantly controls in combination with the short‐circuit current the power conversion efficiency. The maximum performance of 4.8% was found for an ethyl terminated side‐chain, whereas larger alkyl groups resulted in a gradually decreasing power conversion efficiency. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

5.
A negative‐type photosensitive poly(phenylene ether) (PSPPE) based on poly(2,6‐dimethyl‐1,4‐phenylene ether) (PPE), a novel crosslinker 4,4′‐methylene‐bis [2,6‐bis(methoxymethyl)phenol] (MBMP) having good compatibility with PPE, and diphenylidonium 9,10‐dimethoxy anthracene‐2‐sulfonate (DIAS) as a photoacid generator (PAG) has been developed. This resist consisting of PPE (73 wt %), MBMP (20 wt %) and DIAS (7 wt %) showed a high sensitivity (D0.5) of 58 mJ/cm2 and a contrast (γ0.5) of 9.5 when it was exposed to i‐line (365 nm wavelength light), postexposure baked at 145 °C for 10 min, and developed with toluene at 25 °C. A fine negative image featuring 6 μm line‐and‐space pattern was obtained on the film exposed to 300 mJ/cm2 of i‐line by a contact‐printed mode. The resulting polymer film cured at 300 °C for 1 h under nitrogen had a low dielectric constant (ε = 2.46) comparable to that of PPE and a higher Tg than that of PPE. In addition, the cured PSPPE film was pretty low water absorption (<0.05%) as same as PPE. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4949–4958, 2008  相似文献   

6.
This article reports on the synthesis, characterization, and properties of various anthracene‐containing poly (p‐phenylene‐ethynylene)‐alt‐poly(p‐phenylene‐vinylene) (PPE‐PPV) polymers (AnE‐PVs) bearing statistical distributions of various side chains. Primarily, the ratio of linear octyloxy and branched 2‐ethylhexyloxy side chains at the poly(p‐phenylene vinylene) (PPV) parts was varied, leading to the polymers stat, stat1, and stat2. Furthermore, polymers also containing asymmetric substituted PPV and poly(p‐phenylene ethynylene) units (bearing methoxy and 2‐ethylhexyloxy side chains) were prepared yielding stat3, stat4, and stat5. These materials exhibit a broad variation in their photovoltaic properties. It is once more shown that side chains and their distribution can crucially affect the photovoltaic device performance. The introduction of units with asymmetric substitution into these systems seems to be harmful for their utilization in photovoltaic applications. Organic field‐effect transistors were fabricated to investigate hole mobilities in these new materials. Large variance was observed, falling in the range of almost two orders of magnitude, indicating rather different π–π stacking behavior of the polymer backbones owing to side‐chain modifications. Moreover, a selection of the new polymeric systems was investigated regarding their potential for light‐emitting diode (LED) applications. Polymer LEDs using the polymers AnE‐PVstat, ‐stat3, ‐stat4, and ‐stat5, as the active layer showed turn‐on voltage of ~2 V and exhibited red light emission. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

7.
A chemical sensor for metal ions was fabricated based on a water‐soluble conjugated polymer–graphene oxide (GO) composite. Water‐soluble poly(p‐phenylene ethynylene) (PPE) with sulfonic acid side chain groups was used to prepare a very stable water‐soluble PPE–GO composite with strong π–π interactions in water. The relationship between the optical properties and metal ion sensing capability of the PPE–GO composite in aqueous solution was investigated. Addition of metal ions enhanced the fluorescence intensity of the composite, and, in particular, the composite enabled the fluorescence detection of Cu2+ in aqueous solutions with high selectivity and sensitivity. Therefore, this conjugated polymer–GO composite sensor system was found to be an effective turn‐on type chemical sensor for metal ions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
A series of eight poly(p‐phenylene vinylene) (PPV) and poly(p‐phenylene ethynylene) (PPE) ( P1–P8 ) derivatives were tested for their ability to detect the nitroaromatic explosive 2,4,6‐trinitrotoluene (TNT) and its model compound 2,6‐dinitrotoluene (DNT). The polymers P1–P8 represent five structural classes that have not been examined for nitroaromatic sensing. These new motifs include PPE derivatives with a main‐chain m‐terphenyl unit ( P1 ) or oxacyclophane canopy‐like structure ( P2 ) and PPV derivatives with 2,6‐mesitylenephenylene repeats ( P3 and P4 ), 9,9‐dialkyl‐1,4‐fluorenylene repeats ( P5 and P6 ), or m‐phenylene units that periodically disrupt π‐conjugation along the backbone of the polymer ( P7 and P8 ). The time‐dependent photoluminescent response of films to TNT and DNT and the solution‐phase Stern‐Volmer quenching constants for both TNT and DNT were determined. The results are rationalized in terms of side‐chain sterics and π‐system electronics and are discussed relative to known conjugated polymers. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1487–1492  相似文献   

9.
In the presence of excess NaOH, reaction of Cu(OAc)2·H2O with equimolar ammonium calix[4]arene [H4L]I4 ( 1 , H4L = [5,11,17,23‐tetrakis(trimethylammonium)‐25,26,27,28‐tetrahydroxycalix[4]arene]) resulted in the formation of a mononuclear cationic Cu(II) complex [Cu(II)L(H2O)]I2 ( 2 ) in 43% yield. Complex 2 was characterized by elemental analysis, infrared (IR), and single crystal X‐ray diffraction. The Cu(II) atom in 2 is coordinated by four oxygen atoms of one L4? ligand and one O atom from one water molecule, forming a square pyramidal geometry. Complex 2 exhibited high catalytic activity in the oxidative polymerization of 2,6‐dimethylphenol using O2 as oxidizing agent in water under mild conditions. The selective polymerization produced poly(2,6‐dimethyl‐1,4‐phenylene oxide) in high yields with almost no diphenoquinone. The influence of the polymerization temperature, the time interval, the molar ratio of 2,6‐dimethylphenol/ 2 , the concentrations of sodium hydroxide, and sodium n‐dodecyl sulfate were examined. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

10.
A new poly(p‐phenylene ethynylene) derivative with pendant 2,2′‐bipyridyl groups and glycol units (PPE‐bipy) has been prepared, and its metal ion sensing properties were investigated. The polymer of PPE‐bipy exhibited high selectivity for Hg2+ as compared with Li+, Na+, K+, Ba2+, Ca2+, Mg2+, Al3+, Mn2+, Ag+, Zn2+, Pb2+, Ni2+, Cd2+, Cu2+, Co,2+ and Fe3+ in THF/EtOH (1:1, v/v) solution. The fluorescence of PPE‐bipy was efficiently quenched by Hg2+ ions, and the detection limit was found to be 8.0 nM in a THF/EtOH (1:1, v/v) solvent system. PPE‐bipy also showed a selective chromogenic behavior toward Hg2+ ions by changing the color of the solution from slight yellow to colorless, which can be detected with the naked eye. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1998–2007, 2008  相似文献   

11.
The synthesis of two 1,3‐bis(4‐ethynylbenzyloxy)calix[4]arenes, 5,11,17,23‐tetrakis(1,1‐dimethylethyl)‐25,27‐bis(4‐ethynylbenzyloxy)‐26,28‐dihydroxycalix[4]arene ( 1 ) and 25,27‐bis(4‐ethynylbenzyloxy)‐26,28‐dihydroxycalix[4]arene ( 2 ), was accomplished through Sonogashira coupling of appropriate calixarene derivatives. Methods for the polymerization of these bifunctional building blocks with Rh(I) as a catalyst, leading ultimately to conjugated polymers having calix[4]arene units incorporated into the main chain, were explored. Calixarenes 1 and 2 were efficiently polymerized with rhodium‐based initiators and afforded the conjugated polymers poly{5,11,17,23‐tetrakis(1,1‐dimethylethyl)‐25,27‐bis(4‐ethynylbenzyloxy)‐26,28‐dihydroxycalix[4]arene} ( poly 1 ) and poly{25,27‐bis(4‐ethynylbenzyloxy)‐26,28‐dihydroxycalix[4]arene}. Depending on the conditions, high conversions and good yields were obtained. The effects of adding cocatalysts (NHEt2 and/or PPh3) were studied in connection with the number‐average molecular weight and the molecular weight distribution of the resultant polymer ( poly 1 ) and tentatively correlated with the formation of low‐molecular‐weight materials. A catalytic system containing triphenylphosphine as the sole additive ([Rh(nbd)Cl]2; [Rh]/[PPh3] = 0.5) proved to be the best for the polymerization of ptert‐butylcalixarene compound 1 . Linear polymers having high number‐average molecular weights (up to 1.1 × 105 g mol?1) with low polydispersities were produced under these conditions. For debutylated homologue 2 , its polymerization was best carried out in the absence of any added cocatalyst. A cyclopolymerization route, comprising the intramolecular ring closing of the calix[4]arene pendant ethynyl groups followed by an intermolecular propagation step, is advanced to explain the results. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 7054–7070, 2006  相似文献   

12.
Four ethynylene‐containing donor‐acceptor alternating conjugated polymers P1 – P4 with 2,5‐bis(dodecyloxy) substituted phenylene or carbazole as the donor unit and benzothiadiazole (BTZ) as the acceptor unit were synthesized and used as donor polymers in bulk heterojunction polymer solar cells. The optical, electrochemical, and photovoltaic properties of these four polymers with the ethylene unit located at different positions of the polymer chains were systematically investigated. Our results demonstrated that absorption spectra and the HOMO and LUMO energy levels of polymers could be tuned by varying the position of the ethynylene unit in the polymer chains. Photovoltaic devices based on polymer/PC71BM blend films spin coated from chloroform and dichlorobenzene solutions were investigated. For all four polymers, open circuit voltages (Voc) higher than 0.8 V were obtained. P4 , with ethynylene unit between BTZ and thiophene, shows the best performance among these four polymers, with a Voc of 0.94 V, a Jsc of 4.2 mA/cm2, an FF of 0.40, and a PCE of 1.6%. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

13.
Novel fully lower‐rim, carbonate‐bridged calix[8]arene derivatives were successfully synthesized in high yield by the condensation of p‐alkyl substituted calix[8]arenes with triphosgene. Different bases and catalysts were used for the preparation depending on the p‐alkyl substituted groups of the calix[8]arenes. The conformational features of the derivatives were examined by 1H NMR analysis. Thermosetting formulations were prepared from a mixture of bisphenol A polycarbonate with calix[8]arene carbonate derivatives using sodium benzoate as a catalyst. Their crosslinking behaviors were studied using differential thermal/thermogravimetric analysis. No glass‐transition temperatures were observed after annealing at 280–300 °C. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1149–1155, 2001  相似文献   

14.
Anionic poly(p‐phenylene‐ethynylene) (PPE) incorporated polymer hybrids were synthesized from the PPE and tetramethoxysilane together with the organic polymers such as poly(vinylpyrrolidone) via a sol–gel method. Up to 10 wt % of the anionic PPE could be dispersed homogeneously in the resulting polymer hybrid matrix. The obtained polymer hybrids exhibited controllable photoluminescence properties by the modification of the internal environment of organic–inorganic polymer hybrids by changing the organic/inorganic ratios. The photoluminescence of the anionic PPE surrounded by the polymer hybrid matrix was reinforced against the thermal irradiation. Moreover, the photoluminescence of the obtained organic–inorganic polymer hybrids was also tuned by utilizing ionic interactions between the anionic PPE and the inorganic matrix. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3749–3755, 2008  相似文献   

15.
Theoretical studies of 1,3‐alternate‐25,27‐bis(1‐methoxyethyl)calix[4]arene‐azacrown‐5 ( L1 ), 1,3‐alternate‐25,27‐bis(1‐methoxyethyl)calix[4]arene‐N‐phenyl‐azacrown‐5 ( L2 ), and the corresponding complexes M+/ L of L1 and L2 with the alkali‐metal cations: Na+, K+, and Rb+ have been performed using density functional theory (DFT) at B3LYP/6‐31G* level. The optimized geometric structures obtained from DFT calculations are used to perform natural bond orbital (NBO) analysis. The two main types of driving force metal–ligand and cation–π interactions are investigated. The results indicate that intermolecular electrostatic interactions are dominant and the electron‐donating oxygen offer lone pair electrons to the contacting RY* (1‐center Rydberg) or LP* (1‐center valence antibond lone pair) orbitals of M+ (Na+, K+, and Rb+). What's more, the cation–π interactions between the metal ion and π‐orbitals of the two rotated benzene rings play a minor role. For all the structures, the most pronounced changes in geometric parameters upon interaction are observed in the calix[4]arene molecule. In addition, an extra pendant phenyl group attached to nitrogen can promote metal complexation by 3D encapsulation greatly. In addition, the enthalpies of complexation reaction and hydrated cation exchange reaction had been studied by the calculated thermodynamic data. The calculated results of hydrated cation exchange reaction are in a good agreement with the experimental data for the complexes. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

16.
This paper reports the anisotropic electrical properties of a layer‐by‐layer (LBL) film composed of water‐soluble conjugated polymers and single‐walled carbon nanotubes (SWNTs). The water‐soluble poly (p‐phenylene ethynylene)s (PPEs) are capable of a strong ππ interaction with the sidewall of SWNTs and results in a very stable PPE‐SO3/SWNTs composite in aqueous solution. Aligned LBL films were prepared by self‐assembly using the anionic PPE/SWNTs and cationic PPE on various substrates. The polarized Raman spectra exhibited the cos2α polarization dependence of the G‐band intensity between the polarization direction and the SWNTs alignment direction. The electric conductivity within the LBL films can be controlled by the deposition direction in the LBL formation.

  相似文献   


17.
Factors affecting the syntheses of high‐molecular‐weight poly(2,5‐dialkyl‐1,4‐phenylene vinylene) by the acyclic diene metathesis polymerization of 2,5‐dialkyl‐1,4‐divinylbenzenes [alkyl = n‐octyl ( 2 ) and 2‐ethylhexyl ( 3 )] with a molybdenum or ruthenium catalyst were explored. The polymerizations of 2 by Mo(N‐2,6‐Me2C6H3) (CHMe2 Ph)[OCMe(CF3)2]2 at 25 °C was completed with both a high initial monomer concentration and reduced pressure, affording poly(p‐phenylene vinylene)s with low polydispersity index values (number‐average molecular weight = 3.3–3.65 × 103 by gel permeation chromatography vs polystyrene standards, weight‐average molecular weight/number‐average molecular weight = 1.1–1.2), but the polymerization of 3 was not completed under the same conditions. The synthesis of structurally regular (all‐trans), defect‐free, high‐molecular‐weight 2‐ethylhexyl substituted poly(p‐phenylene vinylene)s [poly 3 ; degree of monomer repeating unit (DPn) = ca. 16–70 by 1H NMR] with unimodal molecular weight distributions (number‐average molecular weight = 8.30–36.3 × 103 by gel permeation chromatography, weight‐average molecular weight/number‐average molecular weight = 1.6–2.1) and with defined polymer chain ends (as a vinyl group, ? CH?CH2) was achieved when Ru(CHPh)(Cl)2(IMesH2)(PCy3) or Ru(CH‐2‐OiPr‐C6H4)(Cl)2(IMesH2) [IMesH2 = 1,3‐bis(2,4,6‐trimethylphenyl)‐2‐imidazolidinylidene] was employed as a catalyst at 50 °C. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6166–6177, 2005  相似文献   

18.
The ring‐opening polymerization (ROP) of p‐dioxanone (PDO) under microwave irradiation with triethylaluminum (AlEt3) or tin powder as catalyst was investigated. When the ROP of PDO was catalyzed by AlEt3, the viscosity‐average molecular weight (Mv) of poly(p‐dioxanone) (PPDO) reached 317,000 g mol?1 only in 30 min, and the yield of PPDO achieved 96.0% at 80 °C. Tin powder was successfully used as catalyst for synthesizing PPDO by microwave heating, and PPDO with Mv of 106,000 g mol?1 was obtained at 100 °C in 210 min. Microwave heating accelerated the ROP of PDO catalyzed by AlEt3 or tin powder, compared with the conventional heating method. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3207–3213, 2008  相似文献   

19.
Four para‐linked or meta‐linked cationic water‐soluble fluorene‐containing poly(aryleneethynylene)s (PAEs) were synthesized to investigate the solvent‐induced π‐stacked self‐assembly. These PAE backbones are composed of fluorenylene and phenylene units, which are alternatively linked by ethynylene bonds. UV–vis absorption and photoluminescence spectra were used to study their conformational changes as solvent was gradually changed from MeOH to H2O. In pure water, with gradually increased meta‐phenylene content (0, 50, and 100%), they underwent a gradual transition process of conformation from disordered aggregate structure to helix structure, which was not compactly folded. Moreover, the polymer with an ammonium‐functionalized side chain on the meta‐phenylene unit appeared to adopt a more incompact or extended helix conformation than the corresponding one without this side chain. Furthermore, the conformational changes of these cationic PAEs in H2O were used to study their effects on biological detection. Rubredoxin (Rd), a type of anionic iron–sulfur‐based electron transfer protein, was chosen to act as biological analyte in the fluorescence quenching experiments of these polymers. Preliminary results suggest that they all exhibit amplified fluorescence quenching, and that the polymer with more features of helix conformation tends to be quenched by Rd more efficiently. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5424–5437, 2006  相似文献   

20.
Two novel copoly(p‐phenylene)s ( P1 – P2 ) containing bipolar groups (12.8 and 6.8 mol %, respectively), directly linked hole transporting triphenylamine and electron transporting aromatic 1,2,4‐triazole, were synthesized to enhance electroluminescence (EL) of poly(p‐phenylene vinylene) (PPV) derivatives. The bipolar groups not only enhance thermal stability but also promote electron affinity and hole affinity of the resulting copoly(p‐phenylene)s. Blending the bipolar copoly‐(p‐phenylene)s ( P1 – P2 ) with PPV derivatives ( d6‐PPV ) as an emitting layer effectively improve the emission efficiency of its electroluminescent devices [indium tin oxide (ITO)/poly(3,4‐ethylenedioxythiophene) (PEDOT):poly(styrenesulfonate) (PSS)/polymer blend/Ca (50 nm)/Al (100 nm)]. The maximum luminance and maximum luminance efficiency were significantly enhanced from 310 cd m?2 and 0.03 cd A?1 ( d6‐PPV ‐based device) to 1450 cd m?2 and 0.20 cd A?1 (blend device with d6‐PPV / P1 = 96/4 containing ~0.5 wt % of bipolar groups), respectively. Our results demonstrate the efficacy of the copoly(p‐phenylene)s with bipolar groups in enhancing EL of PPV derivatives. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号