首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Poly(n‐butyl acrylate)‐graft‐branched polyethylene was successfully prepared by the combination of two living polymerization techniques. First, a branched polyethylene macromonomer with a methacrylate‐functionalized end group was prepared by Pd‐mediated living olefin polymerization. The macromonomer was then copolymerized with n‐butyl acrylate by atom transfer radical polymerization. Gel permeation chromatography traces of the graft copolymers showed narrow molecular weight distributions indicative of a controlled reaction. At low macromonomer concentrations corresponding to low viscosities, the reactivity ratios of the macromonomer to n‐butyl acrylate were similar to those for methyl methacrylate to n‐butyl acrylate. However, the increased viscosity of the reaction solution resulting from increased macromonomer concentrations caused a lowering of the apparent reactivity ratio of the macromonomer to n‐butyl acrylate, indicating an incompatibility between nonpolar polyethylene segments and a polar poly(n‐butyl acrylate) backbone. The incompatibility was more pronounced in the solid state, exhibiting cylindrical nanoscale morphology as a result of microphase separation, as observed by atomic force microscopy. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2736–2749, 2002  相似文献   

2.
A series of poly(styrene‐blocktert‐butyl acrylate) heteroatom star block copolymers having various block lengths were prepared by atom transfer radical polymerization (ATRP), using an “as synthesized” cynurate modified trifunctional initiator. The structure of the star polymers was confirmed by the characterization of the individual arms resulting from hydrolysis. Amphiphilic poly(styrene‐block‐acrylic acid) star copolymers were further synthesized by hydrolyzing PtBA blocks using anhydrous trifluoroacetic acid. The characterization data are reported from analyses using gel permeation chromatography, infrared, 1H and 13C NMR spectroscopies. The stable micelle solution was prepared by dialyzing the solution of these polymers in N,N‐dimethylformamide against deionized water. The temperature‐induced associating behavior of these amphiphilic star polymers were studied using dynamic laser light scattering spectroscopy. The hydrodynamic diameter of both micelles and unassociated chains were obtained in the same solution using light scattering cumulant's calculation method. The homogeneity and the size distribution of the micelle population in the solution were determined using centrifuge/sedimentation particle size distribution analyzer. Field emission scanning electron microscope was used to visualize the size of the micelles formed and the micellar aggregates. The influence of the temperature on the viscosity of the micelle solution was studied using an Ubbelohde viscometer. Thermodynamics of micellization of these block copolymers were also investigated. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6367–6378, 2005  相似文献   

3.
The four‐step synthesis of amphiphilic glycopolymers associating dextran as backbone and poly(methyl methacrylate) (PMMA) as grafts is reported, using the “grafting from” strategy. In the first step, the dextran OH functions were partially acetylated. The second step consisted in linking initiator groups by reaction of 2‐bromoisobutyryl bromide (BiBB) with the unprotected OH functions. Third, the atom transfer radical polymerization (ATRP) of methyl methacrylate was carried out in DMSO from the resulting dextran derivative used as a macroinitiator. Finally, the cleavage of the acetate groups led to the expected glycopolymers. Careful attention was given both to the copolymer structure and the control of polymerization. PMMA grafts were analyzed by SEC‐MALLS after their deliberate cleavage from the backbone to evidence a controlled polymerization. Moreover, the mildness of the final deprotection conditions was proved to ensure acetate cleavage without either degrading dextran backbone and PMMA grafts or cleaving grafts from dextran backbone. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7606–7620, 2008  相似文献   

4.
We report on the synthesis of well‐defined amphiphilic copolymer brushes possessing alternating poly(methyl methacrylate) and poly(N‐isopropylacrylamide) grafts, poly(PMMA‐alt‐PNIPAM), via a combination of atom transfer radical polymerization (ATRP) and click reaction (Scheme 1 ). Firstly, the alternating copolymerization of N‐[2‐(2‐bromoisobutyryloxy)ethyl]maleimide (BIBEMI) with 4‐vinylbenzyl azide (VBA) affords poly(BIBEMI‐alt‐VBA). Bearing bromine and azide moieties arranged in an alternating manner, multifunctional poly(BIBEMI‐alt‐VBA) is capable of initiating ATRP and participating in click reaction. The subsequent ATRP of methyl methacrylate (MMA) using poly(BIBEMI‐alt‐VBA) as the macroinitiator leads to poly(PMMA‐alt‐VBA) copolymer brush. Finally, amphiphilic poly(PMMA‐alt‐PNIPAM) copolymer brush bearing alternating PMMA and PNIPAM grafts is synthesized via the click reaction of poly(PMMA‐alt‐VBA) with an excess of alkynyl‐terminated PNIPAM (alkynyl‐PNIPAM). The click coupling efficiency of PNIPAM grafts is determined to be ~80%. Differential scanning calorimetry (DSC) analysis of poly(PMMA‐alt‐PNIPAM) reveals two glass transition temperatures (Tg). In aqueous solution, poly(PMMA‐alt‐PNIPAM) supramolecularly self‐assembles into spherical micelles consisting of PMMA cores and thermoresponsive PNIPAM coronas, which were characterized via a combination of temperature‐dependent optical transmittance, micro‐differential scanning calorimetry (micro‐DSC), dynamic and static laser light scattering (LLS), and transmission electron microscopy (TEM). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2608–2619, 2009  相似文献   

5.
A series of polystyrene‐b‐(poly(2‐(2‐bromopropionyloxy) styrene)‐g‐poly(methyl methacrylate)) (PS‐b‐(PBPS‐g‐PMMA)) and polystyrene‐b‐(poly(2‐(2‐bromopropionyloxy)ethyl acrylate)‐g‐poly(methyl methacrylate)) (PS‐b‐(PBPEA‐g‐PMMA)) as new coil‐comb block copolymers (CCBCPs) were synthesized by atom transfer radical polymerization (ATRP). The linear diblock copolymer polystyrene‐b‐poly(4‐acetoxystyrene) and polystyrene‐b‐poly(2‐(trimethylsilyloxy)ethyl acrylate) PS‐b‐P(HEA‐TMS) were obtained by combining ATRP and activators regenerated by electron transfer (ARGET) ATRP. Secondary bromide‐initiating sites for ATRP were introduced by liberation of hydroxyl groups via deprotection and subsequent esterification reaction with 2‐bromopropionyl bromide. Grafting of PMMA onto either the PBPS block or the PBPEA block via ATRP yielded the desired PS‐b‐(PBPS‐g‐PMMA) or PS‐b‐(PBPEA‐g‐PMMA). 1H nuclear magnetic resonance spectroscopy and gel permeation chromatography data indicated the target CCBCPs were successfully synthesized. Preliminary investigation on selected CCBCPs suggests that they can form ordered nanostructures via microphase separation. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2971–2983  相似文献   

6.
A key problem with nanomaterials is the difficulty of controlling the dispersion of nanoparticles inside an organic medium. To overcome this problem, functionalization of the nanoparticle surface is required. Poly(methyl methacrylate) (PMMA) brushes were grown on the surface of iron oxide magnetic nanoparticles with atom transfer radical polymerization and a grafting‐from approach. Modified magnetic nanoparticles with a graft density of 0.1 PMMA chains/nm2 were obtained. Cu(II), used as a deactivating complex, allowed good control of the polymerization along with a narrow polydispersity of the polymer chains. The functionalized magnetic nanoparticles were characterized with Fourier transform infrared spectroscopy, thermogravimetric analysis, gel permeation chromatography, and atomic force microscopy. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 925–932, 2007  相似文献   

7.
Polymers containing side‐chain terpyridine ligands of well‐defined architectures and controllable molecular weights and molecular weight distributions are reported. These polymers were synthesized by the atom transfer radical polymerization (ATRP) of a newly synthesized terpyridine monomer with three functional initiators. The obtained polymers were characterized with 1H NMR and gel permeation chromatography techniques. The efficiency of the ATRP technique and the overall control of the molecular characteristics of the polymers were demonstrated by a kinetic study of the polymerization reaction. Subsequently, the ruthenium(III)/ruthenium(II) complexation chemistry was employed for the attachment of bis(dodecyloxy)‐functionalized terpyridine moieties onto each side 2,2′:6′,2″‐terpyridine unit of the main polymeric backbone. Thus, the grafting approach was successfully combined with the metal–ligand coordination chemistry for the preparation of highly soluble polymeric complexes. The resulting complexes were fully characterized by means of 1H NMR, gel permeation chromatography, and ultraviolet–visible spectroscopy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4838–4848, 2005  相似文献   

8.
A novel amphiphilic graft copolymer consisting of hydrophilic poly(acrylic acid) backbones and hydrophobic poly(butyl methacrylate) side chains was synthesized by successive atom transfer radical polymerization followed by hydrolysis of poly‐(methoxymethyl acrylate) backbone. A grafting‐from strategy was employed for the synthesis of graft copolymers with narrow molecular weight distributions (polydispersity index < 1.40). Hydrophobic side chains were connected to the backbone through stable C? C bonds instead of ester connections. Poly(methoxymethyl acrylate) backbone was easily hydrolyzed to poly(acrylic acid) backbone with HCl without affecting the hydrophobic side chains. The amphiphilic graft copolymer could form stable micelles in water. The critical micelle concentration in water was determined by a fluorescence probe technique. The morphology of the micelles was preliminarily explored with transmission electron microscopy and was found to be spheres. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6857–6868, 2006  相似文献   

9.
Densely grafting copolymers of ethyl cellulose with polystyrene and poly(methyl methacrylate) were synthesized through atom transfer radical polymerization (ATRP). First, the residual hydroxyl groups on the ethyl cellulose reacted with 2‐bromoisobutyrylbromide to yield 2‐bromoisobutyryloxy groups, known to be an efficient initiator for ATRP. Subsequently, the functional ethyl cellulose was used as a macroinitiator in the ATRP of methyl methacrylate and styrene in toluene in conjunction with CuBr/N,N,N′,N″,N″‐pentamethyldiethylenetriamine as a catalyst system. The molecular weight of the graft copolymers increased without any trace of the macroinitiator, and the polydispersity was narrow. The molecular weight of the side chains increased with the monomer conversion. A kinetic study indicated that the polymerization was first‐order. The morphology of the densely grafted copolymer in solution was characterized through laser light scattering. The individual densely grafted copolymer molecules were observed through atomic force microscopy, which confirmed the synthesis of the densely grafted copolymer. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4099–4108, 2005  相似文献   

10.
Well‐defined sulfonated polystyrene and block copolymers with n‐butyl acrylate (nBA) were synthesized by CuBr catalyzed living radical polymerization. Neopentyl p‐styrene sulfonate (NSS) was polymerized with ethyl‐2‐bromopropionate initiator and CuBr catalyst with N,N,N′,N′‐pentamethylethyleneamine to give poly(NSS) (PNSS) with a narrow molecular weight distribution (MWD < 1.12). PNSS was then acidified by thermolysis resulting in a polystyrene backbone with 100% sulfonic acid groups. Random copolymers of NSS and styrene with various composition ratios were also synthesized by copolymerization of NSS and styrene with different feed ratios (MWD < 1.11). Well defined block copolymers with nBA were synthesized by sequential polymerization of NSS from a poly(n‐butyl acrylate) (PnBA) precursor using CuBr catalyzed living radical polymerization (MWD < 1.29). © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5991–5998, 2008  相似文献   

11.
Novel thermo‐responsive poly(N‐isopropylacrylamide)‐block‐poly(l ‐lactide)‐block‐poly(N‐isopropylacylamide) (PNIPAAm‐b‐PLLA‐b‐PNIPAAm) triblock copolymers were successfully prepared by atom transfer radical polymerization of NIPAAm with Br‐PLLA‐Br macroinitiator, using a CuCl/tris(2‐dimethylaminoethyl) amine (Me6TREN) complex as catalyst at 25 °C in a N,N‐dimethylformamide/water mixture. The molecular weight of the copolymers ranges from 18,000 to 38,000 g mol?1, and the dispersity from 1.10 to 1.28. Micelles are formed by self‐assembly of copolymers in aqueous medium at room temperature, as evidenced by 1H NMR, dynamic light scattering (DLS) and transmission electron microscopy (TEM). The critical micelle concentration determined by fluorescence spectroscopy ranges from 0.0077 to 0.016 mg mL?1. 1H NMR analysis in selective solvents confirmed the core‐shell structure of micelles. The copolymers exhibit a lower critical solution temperature (LCST) between 32.1 and 32.8 °C. The micelles are spherical in shape with a mean diameter between 31.4 and 83.3 nm, as determined by TEM and DLS. When the temperature is raised above the LCST, micelle size increases at high copolymer concentrations due to aggregation. In contrast, at low copolymer concentrations, decrease of micelle size is observed due to collapse of PNIPAAm chains. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3274–3283  相似文献   

12.
Poly(N‐phenylitaconimide) (polyPhII) was prepared using initiators for continuous activator regeneration atom transfer radical polymerization of PhII using FeBr3 complexes as catalysts. Conversion reached 69% in 24 h, yielding polyPhII with a number average molecular weight Mn = 11,900 and a molecular weight distribution Mw/Mn = 1.52. Copolymerizations of PhII with styrene at various molar ratios were performed providing a range of polyPhII‐copolySt polymers. When the copolymerization was carried out with higher [St]0 > [PhII]0 ratio, a one‐pot synthesis of poly(St‐alt‐PhII)‐b‐polySt was achieved. The thermal properties of the obtained copolymers were studied by differential scanning calorimetry. PolyPhII prepared by ATRP showed high glass transition temperature (Tg) of 216 °C and the poly(St‐alt‐PhII)‐b‐polySt exhibited two Tgs, at 162 and 104 °C, corresponding to a poly(St‐alt‐PhII) and polySt segments, respectively. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 822–827  相似文献   

13.
A new “grafting from” strategy for grafting of different monomers (methacrylates, acrylates, and acrylamide) on poly(vinylidene fluoride) (PVDF) backbone is designed using atom transfer radical coupling (ATRC) and atom transfer radical polymerization (ATRP). 4‐Hydroxy TEMPO moieties are anchored on PVDF backbone by ATRC followed by attachment of ATRP initiating sites chosen according to the reactivity of different monomers. High graft conversion is achieved and grafting of poly(methyl methacrylate) (PMMA) exhibits high degree of polymerization (DPn = 770) with a very low graft density (0.18 per hundred VDF units) which has been increased to 0.44 by regenerating the active catalyst with the addition of Cu(0). A significant impact on thermal and stress–strain property of graft copolymers on the graft density and graft length is noted. Higher tensile strain and toughness are observed for PVDF‐g‐PMMA produced from model initiator but graft copolymer from pure PVDF exhibits higher tensile strength and Young's modulus. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 995–1008  相似文献   

14.
The functionalization of monomer units in the form of macroinitiators in an orthogonal fashion yields more predictable macromolecular architectures and complex polymers. Therefore, a new ‐shaped amphiphilic block copolymer, (PMMA)2–PEO–(PS)2–PEO–(PMMA)2 [where PMMA is poly(methyl methacrylate), PEO is poly (ethylene oxide), and PS is polystyrene], has been designed and successfully synthesized by the combination of atom transfer radical polymerization (ATRP) and living anionic polymerization. The synthesis of meso‐2,3‐dibromosuccinic acid acetate/diethylene glycol was used to initiate the polymerization of styrene via ATRP to yield linear (HO)2–PS2 with two active hydroxyl groups by living anionic polymerization via diphenylmethylpotassium to initiate the polymerization of ethylene oxide. Afterwards, the synthesized miktoarm‐4 amphiphilic block copolymer, (HO–PEO)2–PS2, was esterified with 2,2‐dichloroacetyl chloride to form a macroinitiator that initiated the polymerization of methyl methacrylate via ATRP to prepare the ‐shaped amphiphilic block copolymer. The polymers were characterized with gel permeation chromatography and 1H NMR spectroscopy. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 147–156, 2007  相似文献   

15.
A stable nitroxyl radical functionalized with an initiating group for atom transfer radical polymerization (ATRP), 4‐(2‐bromo‐2‐methylpropionyloxy)‐2,2,6,6‐tetramethyl‐1‐piperidinyloxy (Br‐TEMPO), was synthesized by the reaction of 4‐hydroxyl‐2,2,6,6‐tetramethyl‐1‐piperidinyloxy with 2‐bromo‐2‐methylpropionyl bromide. Stable free radical polymerization of styrene was then carried out using a conventional thermal initiator, dibenzoyl peroxide, along with Br‐TEMPO. The obtained polystyrene had an active bromine atom for ATRP at the ω‐end of the chain and was used as the macroinitiator for ATRP of methyl acrylate and ethyl acrylate to prepare block copolymers. The molecular weights of the resulting block copolymers at different monomer conversions shifted to higher molecular weights and increased with monomer conversion. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2468–2475, 2006  相似文献   

16.
New supported catalytic systems based on the immobilization of a ligand onto supported (co)polymers were prepared, allowing copper immobilization onto a solid support during the atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA). These supported catalysts were elaborated by the ATRP of 2‐vinyl‐4,4‐dimethyl‐5‐oxazolone and/or styrene onto a Wang resin initiator. Two different approaches were used, involving well‐defined architectures synthesized by ATRP. First, a supported electrophilic homopolymer [Wang‐g‐poly(2‐vinyl‐4,4‐dimethyl‐5‐oxazolone)] was synthesized to obtain an azlactone ring at each repetitive unit, and a supported statistical copolymer [Wang‐g‐poly(2‐vinyl‐4,4‐dimethyl‐5‐oxazolone‐stat‐styrene)] was synthesized to introduce a distance between the azlactone rings. The azlactone‐based (co)polymers were then modified by a reaction with N,N,N′,N′‐tetraethyldiethylenetriamine (TEDETA) to create supported complexing sites for copper bromide. The ATRP of MMA was studied with these supported ligands, and a first‐order kinetic plot was obtained, but high polydispersity indices of the obtained poly(methyl methacrylate) were observed (polydispersity index > 2). On the other hand, the supported ATRP of styrene was performed, followed by the nucleophilic substitution of bromine by TEDETA (Wang‐g‐polystyrene–N,N,N′,N′‐tetraethyldiethylenetriamine) at the chain end of the grafted polystyrene chains. This strategy led the ligand away from the core bead, depending on the length of the polystyrene block (number‐average molecular weight determined by size exclusion chromatography = 1100–2250 g/mol). These supported complexes mediated a controlled polymerization of MMA, yielding polymers with controlled molar masses and low polydispersity indices. Moreover, after the polymerization, 96% of the initial copper was kept in the beads. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5316–5328, 2006  相似文献   

17.
A dual initiator (4‐hydroxy‐butyl‐2‐bromoisobutyrate), that is, a molecule containing two functional groups capable of initiating two polymerizations occurring by different mechanisms, has been prepared. It has been used for the sequential two‐step synthesis of well‐defined block copolymers of polystyrene (PS) and poly(tetrahydrofuran) (PTHF) by atom transfer radical polymerization (ATRP) and cationic ring‐opening polymerization (CROP). This dual initiator contains a bromoisobutyrate group, which is an efficient initiator for the ATRP of styrene in combination with the Cu(0)/Cu(II)/N,N,N,N,N″‐pentamethyldiethylenetriamine catalyst system. In this way, PS with hydroxyl groups (PS‐OH) is formed. The in situ reaction of the hydroxyl groups originating from the dual initiator with trifluoromethane sulfonic anhydride gives a triflate ester initiating group for the CROP of tetrahydrofuran (THF), leading to PTHF with a tertiary bromide end group (PTHF‐Br). PS‐OH and PTHF‐Br homopolymers have been applied as macroinitiators for the CROP of THF and the ATRP of styrene, respectively. PS‐OH, used as a macroinitiator, results in a mixture of the block copolymer and remaining macroinitiator. With PTHF‐Br as a macroinitiator for the ATRP of styrene, well‐defined PTHF‐b‐PS block copolymers can be prepared. The efficiency of PS‐OH or PTHF‐Br as a macroinitiator has been investigated with matrix‐assisted laser desorption/ionization time‐of‐flight spectroscopy, gel permeation chromatography, and NMR. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3206–3217, 2003  相似文献   

18.
Vinyl acetate and vinyl chloroacetate were copolymerized in the presence of a bis(trifluoro‐2,4‐pentanedionato)cobalt(II) complex and 2,2′‐azobis(4‐methoxy‐2,4‐dimethylvaleronitrile) at 30 °C, forming a cobalt‐capped poly(vinyl acetate‐co‐vinyl chloroacetate). The addition of 2,2,6,6‐tetramethyl‐1‐piperidinyloxy after a certain degree of copolymerization was reached afforded 2,2,6,6‐tetramethyl‐1‐piperidinyloxy‐terminated poly(vinyl acetate‐co‐vinyl chloroacetate) (PVOAc–MI; number‐average molecular weight = 31,000, weight‐average molecular weight/number‐average molecular weight = 1.24). A 1H NMR study of the resulting PVOAc–MI revealed quantitative terminal 2,2,6,6‐tetramethyl‐1‐piperidinyloxy functionality and the presence of 5.5 mol % vinyl chloroacetate in the copolymer. The atom transfer radical polymerization (ATRP) of styrene (St) was studied with ethyl chloroacetate as a model initiator and five different Cu‐based catalysts. Catalysts with bis(2‐pyridylmethyl)octadecylamine (BPMODA) or tris(2‐pyridylmethyl)amine (TPMA) ligands provided the highest initiation efficiency and best control over the polymerization of St. The grafting‐from ATRP of St from PVOAc–MI catalyzed by copper complexes with BPMODA or TPMA ligands provided poly(vinyl acetate)‐graft‐polystyrene copolymers with relatively high polydispersity (>1.5) because of intermolecular coupling between growing polystyrene (PSt) grafts. After the hydrolysis of the graft copolymers, the cleaved PSt side chains had a monomodal molecular weight distribution with some tailing toward the lower number‐average molecular weight region because of termination. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 447–459, 2007  相似文献   

19.
Novel AB2‐type amphiphilic block copolymers of poly(ethylene glycol) and poly(N‐isopropylacrylamide), PEG‐b‐(PNIPAM)2, were successfully synthesized through single‐electron transfer living radical polymerization (SET‐LRP). A difunctional macroinitiator was prepared by esterification of 2,2‐dichloroacetyl chloride with poly(ethylene glycol) monomethyl ether (PEG). The copolymers were obtained via the SET‐LRP of N‐isopropylacrylamide (NIPAM) with CuCl/tris(2‐(dimethylamino)ethyl)amine (Me6TREN) as catalytic system and DMF/H2O (v/v = 3:1) mixture as solvent. The resulting copolymers were characterized by gel permeation chromatography and 1H NMR. These block copolymers show controllable molecular weights and narrow molecular weight distributions (PDI < 1.15). Their phase transition temperatures and the corresponding enthalpy changes in aqueous solution were measured by differential scanning calorimetry. As a result, the phase transition temperature of PEG44b‐(PNIPAM55)2 is similar to that in the case of PEG44b‐PNIPAM110; however, the corresponding enthalpy change is much lower, indicating the significant influence of the macromolecular architecture on the phase transition. This is the first study into the effect of macromolecular architecture on the phase transition using AB2‐type amphiphilic block copolymer composed of PEG and PNIPAM. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4420–4427, 2009  相似文献   

20.
Poly(n‐butyl acrylate) macromonomers with predetermined molecular weights (1300 < number‐average molecular weight < 23,000) and low polydispersity indices (<1.2) were synthesized from bromine‐terminated atom transfer radical polymerization polymers via end‐group substitution with acrylic acid and methacrylic acid. These macromonomers, having a high degree of end‐group functionalization (>90%), were radically homopolymerized to obtain comb polymers. A high macromonomer concentration, combined with a low radical flux, was needed to obtain a high conversion of the macromonomers and a reasonable degree of polymerization. By the traditional radical copolymerization of the hydrophobic macromonomers with the hydrophilic monomer N,N‐dimethylaminoethyl methacrylate (DMAEMA), amphiphilic comb copolymers were obtained. The conversions of the macromonomers and comonomer were almost quantitative under optimized reaction conditions. The molecular weights were high (number‐average molecular weight ≈70,000), and the molecular weight distribution was broad (polydispersity index ≈ 3.5). Kinetic measurements showed simultaneous decreases in the macromonomer and DMAEMA concentrations, indicating a relatively homogeneous composition of the comb copolymers over the whole molecular weight range. This was supported by preparative size exclusion chromatography. The copolymerization of poly(n‐butyl acrylate) macromonomers with other hydrophilic monomers such as acrylic acid or N,N‐dimethylacrylamide gave comb copolymers with multimodal molecular weight distributions in size exclusion chromatography and extremely high apparent molecular weights. Dynamic light scattering showed a heterogeneous composition consisting of small (6–9 nm) and large (23–143 nm) particles, probably micelles or other type of aggregates. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3425–3439, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号