首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adsorption of carbon dioxide on H‐ZSM‐5 zeolite (Si:Al=11.5:1) was studied by means of variable‐temperature FT‐IR spectroscopy, in the temperature range of 310–365 K. The adsorbed CO2 molecules interact with the zeolite Brønsted‐acid OH groups bringing about a characteristic red‐shift of the O? H stretching band from 3610 cm?1 to 3480 cm?1. Simultaneously, the ν3 mode of adsorbed CO2 is observed at 2345 cm?1. From the variation of integrated intensity of the IR absorption bands at both 3610 and 2345 cm?1, upon changing temperature (and CO2 equilibrium pressure), the standard adsorption enthalpy of CO2 on H‐ZSM‐5 is ΔH0=?31.2(±1) kJ mol?1 and the corresponding entropy change is ΔS0=?140(±10) J mol?1 K?1. These results are discussed in the context of available data for carbon dioxide adsorption on other protonic, and also alkali‐metal exchanged, zeolites.  相似文献   

2.
We report the preparation and characterization of a layered double hydroxide (LDH) adsorbent for azoic dye, metanil yellow (yellow GX; YGX) removal. The nanoparticles of Mg‐Fe‐LDH‐NO3 adsorbent were prepared with Mg/Fe molar ratio of 3:1 by a hydrothermal process and coprecipitation method at pH 9.5 and were characterized by X‐ray powder diffraction (XRPD), thermal gravimetric analysis (TGA), elemental analysis, and Fourier transform infrared spectroscopy (FT‐IR). The size and morphology of nanoparticles were examined by scanning electron microscopy (SEM). The XRD patterns indicate that the intercalation of YGX between the LDH layers has not occurred and surface adsorption has happened. In the adsorption experiments, the Gibbs free energy ΔG0 values, the enthalpy ΔH0, and entropy ΔS0 was determined. The isotherms showed that the adsorption of YGX by Mg‐Fe‐LDH‐NO3 was both consistent with Langmuir and Freundlich equations.  相似文献   

3.
The nanoparticles of Cu‐Fe‐NO3 layered double hydroxide (LDH) were prepared with Cu/Fe molar ratio of 2:1 by a thermal process and co‐precipitation method at pH 9 and were characterized by X‐ray powder diffraction (XRPD), thermal gravimetric analysis (TGA), atomic adsorption spectroscopy (AAS) and fourier infrared spectroscopy (FT‐IR). The size and morphology of nanoparticles were examined by transmission electron microscopy (TEM). Cu‐Fe‐NO3‐LDH was studied as a potential adsorbent of the acid herbicide MCPA [(4‐chloro‐2‐methylphenoxy) acetic acid] as function of pH, contact time and temperature. The results showed high and rapid adsorption of MCPA on the LDH. The characterization of the adsorption products by XRD indicates that the intercalation of MCPA between the LDH layers has not occurred and surface adsorption has happened. The adsorption kinetic was tested for pseudo‐first‐order, pseudo‐second‐order, elovich and intra‐particle diffusion kinetic models and rate constants were calculated. Freundlich and Langmuir isotherm models were applied to experimental equilibrium data obtained from the measurements of pesticide adsorption. Langmuir isotherm slightly better fitted to the experimental data than that of Freundlich. In the adsorption experiments, the Gibbs free energy ΔG0 values, the enthalpy ΔH0, and entropy ΔS0 were determined.  相似文献   

4.
In this study activated carbon was used for the removal of thiram from aqueous solutions. Adsorption experiments were carried out as a function of time, initial thiram concentration and temperature. Equilibrium data fitted well to the Freundlich and Langmuir equilibrium models in the studied concentration range. Adsorption kinetics followed a pseudo second‐order kinetic model rather than pseudo first‐order model. The results from kinetic experiments were used to describe the adsorption mechanism. Both boundary layer and intraparticle diffusion played important role in the adsorption mechanism of thiram. Thermodynamic parameters (ΔG0, ΔH0, and ΔS0) were determined and the adsorption process was found to be an endothermic one. The negative values of ΔG0 at different temperatures were indicative of the spontaneity of the adsorption process.  相似文献   

5.
This paper studied the role of O‐containing groups over the coal surface in methane adsorption. The coal was modified with H2SO4, (NH4)2S2O8 or H2SO4/(NH4)2S2O8), respectively, to introduce O‐containing functional groups, and characterized by proximate analysis, ultimate analysis, Boehm titration, X‐ray photoelectron spectroscopy (XPS) and nitrogen adsorption. The results of ultimate analysis, Boehm titration and XPS indicate that there were increases in terms of both the content of oxygen and the quantities of O‐containing groups over the modified coals surface, especially for the carboxyl. Nitrogen adsorption shows that the modified coals possessed higher surface area and pore volume than that of 0‐XQ. The methane adsorption data were measured at 298 K at pressures up to 4.0 MPa by the volumetric method and fitted well by Langmuir model. Experimental results implied that O‐containing groups and pore structure affected methane adsorption. The adsorption capacities decreased as increasing quantities of O‐containing groups.  相似文献   

6.
The highly stable nitrosyl iron(II) mononuclear complex [Fe(bztpen)(NO)](PF6)2 (bztpen=N‐benzyl‐N,N′,N′‐tris(2‐pyridylmethyl)ethylenediamine) displays an S=1/2?S=3/2 spin crossover (SCO) behavior (T1/2=370 K, ΔH=12.48 kJ mol?1, ΔS=33 J K?1 mol?1) stemming from strong magnetic coupling between the NO radical (S=1/2) and thermally interconverted (S=0?S=2) ferrous spin states. The crystal structure of this robust complex has been investigated in the temperature range 120–420 K affording a detailed picture of how the electronic distribution of the t2g–eg orbitals modulates the structure of the {FeNO}7 bond, providing valuable magneto–structural and spectroscopic correlations and DFT analysis.  相似文献   

7.
JSC‐1a (a simulated lunar dust sample) supported on a silica wafer (SiO2/Si(111)) has been characterized by scanning electron microscopy (SEM), energy dispersive x‐ray (EDX) spectroscopy, and Auger electron spectroscopy (AES). The adsorption kinetics of water has been studied primarily by thermal desorption spectroscopy (TDS) and in addition by collecting isothermal adsorption transients. Blind experiments on the silica support have been performed as well. JSC‐1a consists mostly of aluminosilicate glass and other minerals containing Fe, Na, Ca, and Mg, as characterized in detail in prior studies, for example, at NASA. The particle sizes span the range from a few micrometers up to 100 µm. At small exposures, H2O TDS is characterized by broad (100–450) K structures; at large exposures, distinct TDS peaks emerge, which are assigned to amorphous solid water (ASW) (145 K) and crystalline ice (CI) (165 K). Water dissociates on JSC‐1a at small exposures but not on the bare silica support. Coadsorption TDS data (alkane–water mixtures) indicate that rather porous condensed ice layers form at large exposures, with the mineral particles acting most likely as nucleation sites. At thermal impact energies, the initial adsorption probability amounts to 0.92 ± 0.05. It is evident that the drop‐and‐dry technique, developed in studies about nanoparticles/tubes, can be extended to obtain samples for surface science studies based on powders consisting of particles with rather large diameters. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
《Chemphyschem》2003,4(5):466-473
The influence of potassium, in the submonolayer regime, on the adsorption and coadsorption of CO2 and H on a stepped copper surface, Cu(115), has been studied by photoelectron spectroscopy, temperature‐programmed desorption, and work‐function measurements. Based on the fast recording of C 1s and O 1s core‐level spectra, the uptake of CO2 on K/Cu(115) surfaces at 120 K has been followed in real time, and the different reaction products have been identified. The K 2p3/2 peak exhibits a chemical shift of ?0.4 eV with CO2 saturation, the C 1s peaks of the CO3 and the CO species show shifts of ?0.8 and ?0.5 eV, respectively, and the C 1s peak of the physisorbed CO2 exhibits no shift. The effects of gradually heating the CO2/K/Cu(115) surface include the desorption of physisorbed CO2 at 143 K; the desorption of CO at 193 K; the ordering of the CO3 species, and subsequently the dissociation of the carbonate with desorption at 520–700 K. Formate, HCOO?, was synthesized by the coadsorption of H and CO2 on the K/Cu(115) surface at 125 K. Formate formed exclusively for potassium coverages of less than 0.4 monolayer, whereas both formate and carbonate were formed at higher coverages. The desorption of formate‐derived CO2 took place in the temperature range 410–425 K and carbonate‐derived CO2 desorbed at 645–660 K, depending on the potassium coverage.  相似文献   

9.
The adsorption of propene on neutral gold clusters is investigated in a collision cell under a few collision conditions. The adsorption reaction is studied by pressure‐dependent kinetic measurements and delayed unimolecular dissociation of the excited Aun?propene complexes. The cluster size (n=9–25) and temperature (T=90–300 K) dependence of the propene adsorption is analyzed. Strong size dependences of the absorption reaction are observed; a larger propene adsorption probability was found for gold clusters composed of an even number of atoms. Propene binding energies are estimated by comparison of the temperature‐dependent unimolecular dissociation rates with rates obtained by using statistical RRKM modeling. The Aun–propene binding energies decrease non‐monotonously with cluster size and are in the range of 1.2–0.85 eV for n=9–25. Finally, the bonding of C3H6 on Aun is qualitatively described and similarities with the absorption of CO molecules on gold clusters are discussed.  相似文献   

10.
The adsorption of dibenzothiophene (DBT) in hexadecane onto NaY zeolite has been studied by performing equilibrium and kinetic adsorption experiments. The influence of several variables such as contact time, initial concentration of DBT and temperature on the adsorption has been investigated. The results show that the isothermal equilibrium can be represented by the Langmuir equation. The maximum adsorption capacity at different temperatures and the corresponding Langmuir constant (K L ) have been deduced. The thermodynamic parameters (ΔG 0H 0S 0) for the adsorption of DBT have also been calculated from the temperature dependence of K L using the van’t Hoff equation. The value of ΔH 0S 0 are found to be −30.3 kJ mol−1 and −33.2 J mol−1 K−1 respectively. The adsorption is spontaneous and exothermic. The kinetics for the adsorption process can be described by either the Langmuir model or a pseudo-second-order model. It is found that the adsorption capacity and the initial rate of adsorption are dependent on contact time, temperature and the initial DBT concentration. The low apparent activation energy (12.4 kJ mol−1) indicates that adsorption has a low potential barrier suggesting a mass transfer controlled process. In addition, the competitive adsorption between DBT, naphthalene and quinoline on NaY was also investigated.  相似文献   

11.
12.
The authors predict that the magnetic moment of the scandium clusters can not be efficiently enhanced with the encapsulation of Fe atom, which is different from previous works with Fe atom doped in Bn, Sin, and Gen clusters. It was found that starting from n=6, the growth patterns of the ground state structures of the ScnFe clusters are dominated by the octahedron structures with Fe atom falling into the center of the host framework. The calculated results manifest that doping of the Fe atom contributes to strengthening the stabilities of the scandium framework. Maximum peaks are observed for clusters of n=3, 6 and 8 on the size dependence of the second‐order energy differences, implying that these clusters possess relatively higher stability. The HOMO‐LUMO gap of the ScnFe clusters exhibits an oscillational odd‐even character with the local peaks of n=4, 6 and 8. Especially, there is the largest oscillation of the gap with n=4 and 5. Additionally, the doped Fe atom exhibits the antiferromagnetic alignment at n=4, 5, 7 and 9. Also, the quench of the magnetic moments as n=6, 8 and 10 may be ascribed to the model of close‐shell electrons.  相似文献   

13.
Ni,Fe‐containing CO dehydrogenases (CODHs) use a [NiFe4S4] cluster, termed cluster C, to reversibly reduce CO2 to CO with high turnover number. Binding to Ni and Fe activates CO2, but current crystal structures have insufficient resolution to analyze the geometry of bound CO2 and reveal the extent and nature of its activation. The crystal structures of CODH in complex with CO2 and the isoelectronic inhibitor NCO? are reported at true atomic resolution (dmin≤1.1 Å). Like CO2, NCO? is a μ22 ligand of the cluster and acts as a mechanism‐based inhibitor. While bound CO2 has the geometry of a carboxylate group, NCO? is transformed into a carbamoyl group, thus indicating that both molecules undergo a formal two‐electron reduction after binding and are stabilized by substantial π backbonding. The structures reveal the combination of stable μ22 coordination by Ni and Fe2 with reductive activation as the basis for both the turnover of CO2 and inhibition by NCO?.  相似文献   

14.
It has recently been shown that thin polymer films in the nanometer thickness range exhibit anomalous swelling maxima in supercritical CO2 (Sc‐Co2) in the vicinity of the critical point of CO2. The adsorption isotherm of CO2 on carbon black, silica surfaces, porous zeolites, and other surfaces, is known to exhibit anomalous maxima under similar CO2 conditions. It is believed that because CO2 possesses a low cohesive energy density, there would be an excess amount of CO2 at the surfaces of these materials and hence the CO2/polymer interface. This might cause excess CO2 in the polymer films near the free surface, and hence the swelling anomaly. In addition, an excess of CO2 would reside at the polymer/substrate and polymer/CO2 interfaces for entropic reasons. These interfacial effects, as have been suggested, should account for an overall excess of CO2 in a thin polymer film compared to the bulk, and would be responsible for the anomalous swelling. In this study, we use in situ spectroscopic ellipsometry to investigate the role of interfaces on the anomalous swelling of polymer thin films of varying initial thicknesses, h0, exposed to Sc‐CO2. We examined three homopolymers, poly(1,1′‐dihydroperflurooctyl methacrylate) (PFOMA), polystyrene (PS), poly(ethylene oxide) (PEO), that exhibit very different interactions with Sc‐CO2, and the diblock copolymer of PS‐b‐PFOMA. We show that the anomalous swelling cannot be solely explained by the excess adsorption of CO2 at interfaces. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1313–1324, 2007  相似文献   

15.
Nitrogenase enzymes catalyze the reduction of atmospheric dinitrogen to ammonia utilizing a Mo‐7Fe‐9S‐C active site, the so‐called FeMoco cluster. FeMoco and an analogous small‐molecule (Et4N)[(Tp)MoFe3S4Cl3] cubane have both been proposed to contain unusual spin‐coupled MoIII sites with an S(Mo)=1/2 non‐Hund configuration at the Mo atom. Herein, we present Fe and Mo L3‐edge X‐ray magnetic circular dichroism (XMCD) spectroscopy of the (Et4N)[(Tp)MoFe3S4Cl3] cubane and Fe L2,3‐edge XMCD spectroscopy of the MoFe protein (containing both FeMoco and the 8Fe‐7S P‐cluster active sites). As the P‐clusters of MoFe protein have an S=0 total spin, these are effectively XMCD‐silent at low temperature and high magnetic field, allowing for FeMoco to be selectively probed by Fe L2,3‐edge XMCD within the intact MoFe protein. Further, Mo L3‐edge XMCD spectroscopy of the cubane model has provided experimental support for a local S(Mo)=1/2 configuration, demonstrating the power and selectivity of XMCD.  相似文献   

16.
Adsorption isotherms for Ar, 02, N2, CO, CO2, CH4, and C2H6 on 4A zeolite at three or more temperatures were determined. An adsorption equation based on a 2-dimensional virial equation in terms of integer powers of the reciprocal of (A - σ) was shown to fit the equilibrium data accurately with three constants for C2H6 and two constants for other gases. Here A is the area per molecule and σ is the area of the molecule in a close-packed situation.Rates of adsorption and desorption of Ar, N2, CO, CH4, and C2H6 on 4A zeolite were determined over ranges of temperature in which the rate was moderately fast. Electron microscopy showed that the particles were cubes, and their size-distribution was determined. The conventional Fick's law rate equation for cubes was used to produce a generalized rate curve for the particle size distribution of the adsorbent. This curve was applied to the last 20% of the rate curve to obtain a diffusivity that could be related to the final amount adsorbed. This procedure also avoids the initial rapid portion of the adsorption, in which large variations of adsorbent temperature from that of the bath often occur.The diffusivities increased with amount adsorbed by a small extent for Ar and CH4 and by larger amounts for N2, CO, and C2H6. The activation energy for diffusion, as well as the heat of adsorption, were nearly independent of amount adsorbed for Ar and CH4, but these quantities decreased substantially with coverage for N2, CO, and C2H6. The dependence upon amount adsorbed of diffusivity and activation energy seemed related to the shape of the adsorption isotherm; those for Ar and CH4 were nearly linear, whereas isotherms for the other gases had large curvatures. The activation energy for diffusion varied with coverage in the same way as heat of adsorption.  相似文献   

17.
The influence of pre‐adsorbed CO on the dissociative adsorption of D2 on Ru(0001) is studied by molecular‐beam techniques. We determine the initial dissociation probability of D2 as a function of its kinetic energy for various CO pre‐coverages between 0.00 and 0.67 monolayers (ML) at a surface temperature of 180 K. The results indicate that CO blocks D2 dissociation and perturbs the local surface reactivity up to the nearest‐neighbour Ru atoms. Non‐activated sticking and dissociation become less important with increasing CO coverage, and vanish at θCO≈0.33 ML. In addition, at high D2 kinetic energy (>35 kJ mol?1) the site‐blocking capability of CO decreases rapidly. These observations are attributed to a CO‐induced activation barrier for D2 dissociation in the vicinity of CO molecules.  相似文献   

18.
The novel coordination polymers [Cu(Hoxonic)(H2O)]n ( 1 ) and [Cu(Hoxonic)(bpy)0.5]n ? 1.5 n H2O ( 2?H2O ) (H3oxonic: 4,6‐dihydroxy‐1,3,5‐triazine‐2‐carboxylic acid; bpy: 4,4′‐bipyridine) have been isolated and structurally characterised by ab initio X‐ray powder diffraction. The dense phase 1 contains 1D zig‐zag chains in which Hoxonic dianions bridge square‐pyramidal copper(II) ions, apically coordinated by water molecules. On the contrary, 2?H2O , prepared by solution and solventless methods, is based on 2D layers of octahedral copper(II) ions bridged by Hoxonic ligands, further pillared by bpy spacers. The resulting pro‐porous 3D network possesses small hydrated cavities. The reactivity, thermal, magnetic and adsorptive properties of these materials have been investigated. Notably, the adsorption studies on 2 show that this material possesses unusual adsorption behaviour. Indeed, guest uptake is facilitated by increasing the thermal energy of both the guest and the framework. Thus, neither N2 at 77 K nor CO2 at 195 K are incorporated, and CH4 is only minimally adsorbed at 273 K and high pressures (0.5 mmol g?1 at 2500 kPa). By contrast, CO2 is readily incorporated at 273 K (up to 2.5 mmol g?1 at 2500 kPa). The selectivity of 2 towards CO2 over CH4 has been investigated by means of variable‐temperature zero coverage adsorption experiments and measurement of breakthrough curves of CO2/CH4 mixtures. The results show the highly selective incorporation of CO2 in 2 , which can be rationalised on the basis of the framework flexibility and polar nature of its voids.  相似文献   

19.
A novel metal‐doping strategy was developed for the construction of iron‐decorated microporous aromatic polymers with high small‐gas‐uptake capacities. Cost‐effective ferrocene‐functionalized microporous aromatic polymers (FMAPs) were constructed by a one‐step Friedel–Crafts reaction of ferrocene and s‐triazine monomers. The introduction of ferrocene endows the microporous polymers with a regular and homogenous dispersion of iron, which avoids the slow reunion that is usually encountered in previously reported metal‐doping procedures, permitting a strong interaction between the porous solid and guest gases. Compared to ferrocene‐free analogues, FMAP‐1, which has a moderate BET surface area, shows good gas‐adsorption capabilities for H2 (1.75 wt % at 77 K/1.0 bar), CH4 (5.5 wt % at 298 K/25.0 bar), and CO2 (16.9 wt % at 273 K/1.0 bar), as well as a remarkably high ideal adsorbed solution theory CO2/N2 selectivity (107 v/v at 273 K/(0–1.0) bar), and high isosteric heats of adsorption of H2 (16.9 kJ mol?1) and CO2 (41.6 kJ mol?1).  相似文献   

20.
Unique hollow‐caged (MN4)nC6(10 ? n) (M = Zn, Mg, Fe, n = 1?6) complexes designed by introduction of n porphyrinoid fragments in C60 fullerene structure were proposed and the atomic and electronic structures were calculated using LC‐DFT MPWB95 and M06 potentials and 6‐311G(d)/6‐31G(d) basis sets. The complexes were optimized using various symmetric configurations from the highest Oh to the lowest C1 point groups in different spin states from S = 0 (singlet) to S = 7 (quindectet) for M = Fe to define energetically preferable atomic and electronic structures. Several metastable complexes were determined and the key role of the metal ions in stabilization of the atomic structure of the complexes was revealed. For Fe6N24C24, the minimum energy was reported for C2h, D2h, and D4h symmetry of pentet state S = 2, so the complex can be regarded as unique molecular magnet. It was found that the metal partial density of states determine the nature of HOMO and LUMO levels making the clusters promising catalysts. © 2014 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号