共查询到20条相似文献,搜索用时 15 毫秒
1.
Sung Chul Hong Shijun Jia Mircea Teodorescu Tomasz Kowalewski Krzysztof Matyjaszewski Amy C. Gottfried Maurice Brookhart 《Journal of polymer science. Part A, Polymer chemistry》2002,40(16):2736-2749
Poly(n‐butyl acrylate)‐graft‐branched polyethylene was successfully prepared by the combination of two living polymerization techniques. First, a branched polyethylene macromonomer with a methacrylate‐functionalized end group was prepared by Pd‐mediated living olefin polymerization. The macromonomer was then copolymerized with n‐butyl acrylate by atom transfer radical polymerization. Gel permeation chromatography traces of the graft copolymers showed narrow molecular weight distributions indicative of a controlled reaction. At low macromonomer concentrations corresponding to low viscosities, the reactivity ratios of the macromonomer to n‐butyl acrylate were similar to those for methyl methacrylate to n‐butyl acrylate. However, the increased viscosity of the reaction solution resulting from increased macromonomer concentrations caused a lowering of the apparent reactivity ratio of the macromonomer to n‐butyl acrylate, indicating an incompatibility between nonpolar polyethylene segments and a polar poly(n‐butyl acrylate) backbone. The incompatibility was more pronounced in the solid state, exhibiting cylindrical nanoscale morphology as a result of microphase separation, as observed by atomic force microscopy. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2736–2749, 2002 相似文献
2.
Nitroxide‐mediated ‘living’ free radical polymerisation (LREP) was employed for the first time to prepare graft copolymer by having arylated poly (vinyl chloride) (PVC‐Ph) as a backbone and polystyrene (PS) as branches. The graft copolymerization of styrene was initiated by arylated PVC carrying 2,2,6,6‐tetramethyl‐1‐piperidinyloxy (TEMPO) groups as a macroinitiator. Thus, the arylated PVC was prepared in the mild conditions and these reaction conditions could overcome the problem of gelation and crosslinking in polymers. Then, 1‐hydroxy TEMPO was synthesized by the reduction of TEMPO with sodium ascorbate. This functional nitroxyl compound was coupled with brominated arylated PVC (PVC‐Ph‐Br). The resulting macro‐initiator (PVC‐Ph‐TEMPO) for ‘living’ free radical polymerization was then heated in the presence of styrene to form graft copolymer. DSC, GPC, 1HNMR, and FT‐IR spectroscopy were employed to investigate the structure of the polymers. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
3.
Thomas Junkers Lin Zang Edgar H.H. Wong Nico Dingenouts Christopher Barner‐Kowollik 《Journal of polymer science. Part A, Polymer chemistry》2011,49(22):4841-4850
The preparation of ABA‐type block copolymers via tandem enhanced spin capturing polymerization (ESCP) and nitroxide‐mediated polymerization (NMP) processes is explored in‐depth. Midchain alkoxyamine functional polystyrenes (Mn = 6200, 12,500 and 19,900 g mol?1) were chain extended with styrene as well as tert‐butyl acrylate at elevated temperature NMP conditions (T = 110 °C) generating a tandem ESCP‐NMP sequence. Although the chain extensions and thus the block copolymer formation processes function well (yielding in the case of the chain extension with styrene number average molecular weights of up to 20,800 g mol?1 (PDI = 1.22) when the 6200 g mol?1 precursor is used and up to 67,500 g mol?1 (PDI = 1.36) when the 19,900 g mol?1 precursor is used and 21,600 g mol?1 (PDI = 1.17) as well as 37,100 g mol?1 (PDI = 1.21) for the tert‐butyl acrylate chain extensions for the 6200 and 12,500 g mol?1 precursors, respectively), it is also evident that the efficiency of the block copolymer formation process decreases with an increasing chain length of the ESCP precursor macromolecules (i.e., for the 19,900 g mol?1 ESCP precursor no efficient chain extension with tert‐butyl acrylate can be observed). For the polystyrene‐block‐tert‐butyl acrylate‐block‐polystyrene polymers, the molecular weights were determined via triple detection SEC using light scattering and small‐angle X‐ray scattering. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011. 相似文献
4.
Koji Ishizu Hideya Katsuhara Kazuo Itoya 《Journal of polymer science. Part A, Polymer chemistry》2006,44(10):3321-3327
(AB)f star block copolymers were synthesized by the radical polymerization of a poly(t‐butyl acrylate)‐block‐poly(methyl methacrylate) diblock macroinitiator with ethylene glycol dimethacrylate in methanol under UV irradiation. Diblock macroinitiators were prepared by diethyldithiocarbamate‐mediated sequential living radical copolymerization initiated by (4‐cyano‐4‐diethyldithiocarbamyl)pentanoic acid under UV irradiation. The arm number (f) was controlled by the variation of the initial concentration of the diblock initiator. It was found from light scattering data that such star block copolymers (f ≥ 344) not only took a spherical shape but also formed a single molecule in solution. Subsequently, we derived amphiphilic [arm: poly(acrylic acid)‐block‐poly(methyl methacrylate)] star block copolymers by the hydrolysis of poly(t‐butyl acrylate) blocks. These amphiphilic star block copolymers were soluble in water because the external blocks were composed of hydrophilic poly(acrylic acid) chains. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3321–3327, 2006 相似文献
5.
Jyh-Ming Hwu Ming-Jen Chang Jui-Chi Lin Hsiu-Yu Cheng George-J Jiang 《Journal of organometallic chemistry》2005,690(26):10601-6308
This investigation attempts to elucidate the copolymerization reaction ethylene and p-methylstyrene via the homogeneous metallocene catalyst, Et(Ind)2ZrCl2. With increasing of p-methylstyrene concentration, the poly[ethylene-co-(p-methylstyrene)] copolymer shows systematical decrease of melting temperature and crystallinity and increase of glass transition temperature. The benzylic protons of p-methylstyrene are ready for numerous chemical reactions, such as halogenation and oxidation, which can introduce functional groups at the p-methyl group position under mild reaction conditions. With the bromination reaction of poly[ethylene-co-(p-methylstyrene)], polyethylene graft copolymers, such as polyethylene-g-poly(methyl methacrylate) and polyethylene-g-polystyrene can be prepared via atomic transfer radical polymerization. The following selective bromination reaction of p-methylstyrene units in the copolymer and the subsequent radical graft-from polymerization were effective methods of producing polymeric side chains with well-defined structure. The products were characterized by nuclear magnetic resonance, gel-permeation chromatography, differential scanning calorimetry, and thermal gravimetric analysis. Additionally, the morphology of PE/PMMA and PE/PMMA/PE-g-PMMA blend are compared by using scanning electron microscope. 相似文献
6.
Peter Nesvadba Lucienne Bugnon Rosemarie Sift 《Journal of polymer science. Part A, Polymer chemistry》2004,42(13):3332-3341
The synthesis of new 7‐membered diazepanone alkoxyamines [2,2,7,7‐tetramethyl‐1‐(1‐phenyl‐ethoxy)‐[1,4]diazepan‐5‐one ( 3 ) and 2,7‐diethyl‐2,3,7‐trimethyl‐1‐(1‐phenyl‐ethoxy)‐[1,4]diazepan‐5‐one ( 8 )] through the Beckmann rearrangement of piperidin‐4‐one alkoxyamines was developed. Both 3 and 8 were evaluated as initiators and regulators for the nitroxide‐mediated radical polymerization of styrene and n‐butyl acrylate. 8 , a sterically highly hindered alkoxyamine readily available as a crystalline solid, allowed the fast and controlled polymerization and preparation of polymers with low polydispersity indices (1.2–1.4) up to a degree of polymerization of about 100. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3332–3341, 2004 相似文献
7.
Kim Huan Laurence Bes David M. Haddleton Ezat Khoshdel 《Journal of polymer science. Part A, Polymer chemistry》2001,39(11):1833-1842
Polydimethylsiloxane (PDMS) block copolymers were synthesized by using PDMS macroinitiators with copper-mediated living radical polymerization. Diamino PDMS led to initiators that gave ABA block copolymers, but there was low initiator efficiency and molecular weights are somewhat uncontrolled. The use of mono- and difunctional carbinol–hydroxyl functional initiators led to AB and ABA block copolymers with narrow polydispersity indices (PDIs) and controlled number-average molecular weights (Mn's). Polymerization with methyl methacrylate (MMA) and 2-dimethylaminoethyl methacrylate (DMAEMA) was discovered with a range of molecular weights produced. Polymerizations proceeded with excellent first-order kinetics indicative of living polymerization. ABA block copolymers with MMA were prepared with between 28 and 84 wt % poly(methyl methacrylate) with Mn's between 7.6 and 35 K (PDI <1.30), which show thermal transitions characteristic of block copolymers. ABA block copolymers with DMAEMA led to amphiphilic block copolymers with Mn's between 9.5 and 45.7 K (PDIs of 1.25–1.70), which formed aggregates in solution with a critical micelle concentration of 0.1 g dm−3 as determined by pyrene fluorimetry experiments. Monocarbinol functional PDMS gave AB block copolymers with both MMA and DMAEMA. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1833–1842, 2001 相似文献
8.
Heide Gtz Eva Harth Stefan M. Schiller Curtis W. Frank Wolfgang Knoll Craig J. Hawker 《Journal of polymer science. Part A, Polymer chemistry》2002,40(20):3379-3391
The nitroxide‐mediated living free‐radical polymerization of 1,2,5,6‐di(isopropylidene)‐D ‐glucose‐2‐propenoate was achieved in dimethylformamide at 105 °C with an α‐hydrido alkoxyamine initiator functionalized with a lipophilic N,N‐di(octadecyl)amine group. The kinetics of the polymerization were investigated, and the mechanism was shown to be a living process allowing, after hydrolysis, controlled molecular weight, low‐polydispersity lipo‐glycopolymers to be prepared. The amphiphilic character of the macromolecule could be altered by either the exchange of the alkoxyamine at the chain end with hydrogen or the preparation of copolymers with lipophilic monomers such as N,N‐di(octadecyl)acrylamide. The surface and membrane‐forming properties of these novel lipopolymers demonstrate their amphiphilic character. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3379–3391, 2002 相似文献
9.
Julien Rigolini Bruno Grassl Laurent Billon Stephanie Reynaud Olivier F. X. Donard 《Journal of polymer science. Part A, Polymer chemistry》2009,47(24):6919-6931
The present work describes a combination of microwave irradiation as a heating source and water as a solvent for carrying out a living/controlled polymerization of acrylamide. Reasonable results were obtained for a nitroxide‐mediated radical polymerization (NMP) with a combination of a conventional hydrosoluble radical initiator and a β‐phosphonylated nitroxide. The microwave enhancement of the polymerization was found to depend on the mode of irradiation, i.e., either a dynamic (DYN) mode or an pulse (SPS) mode. The former mode corresponded to a dynamic control of the temperature by way of a high initial microwave power, and in this case, no specific microwave effect was observed. On the other hand, in the SPS mode, which is a pulsed power mode, the result showed a strong acceleration of the polymerization process (>50 times) without the loss of the living/controlled polymerization characteristics, which is relevant with a reinitiation of the polyacrylamide macroinitiator even after 100% of conversion. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2009 相似文献
10.
Kejian Bian Michael F. Cunningham 《Journal of polymer science. Part A, Polymer chemistry》2005,43(10):2145-2154
Polymeric microspheres were prepared from a Merrifield resin via nitroxide‐mediated radical polymerization. Polystyrene, poly(acetoxystyrene), and poly[styrene‐b‐(methyl methacrylate‐co‐styrene)], poly(acetoxystyrene‐b‐styrene), and poly(styrene‐co‐2‐hydroxyethyl methacrylate) copolymers were demonstrated to graft onto 2,2,6,6‐tetramethyl‐1‐piperidinyloxy nitroxide bound Merrifield resins. The polymerization control was enhanced both on the surface and in solution by the addition of sacrificial nitroxide. The significant increase in the particle diameter (more than a fivefold volume increase for polystyrene brushes) showed that polymer growth was not only on the surface but also within the particles, and this diameter increase could be adjusted through changes in the molecular weight of the polymers. The microspheres were characterized by elemental analysis, IR spectroscopy, particle size analysis, and optical microscopy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2145–2154, 2005 相似文献
11.
Cline Farcet Julien Nicolas Bernadette Charleux 《Journal of polymer science. Part A, Polymer chemistry》2002,40(24):4410-4420
The controlled free‐radical homopolymerization of n‐butyl acrylate was studied in aqueous miniemulsions at 112 and 125 °C with a low molar mass alkoxyamine unimolecular initiator and an acyclic β‐phosphonylated nitroxide mediator, N‐tert‐butyl‐N‐(1‐diethylphosphono‐2,2‐dimethylpropyl) nitroxide, also called SG1. The polymerizations led to stable latices with 20 wt % solids and were obtained with neither coagulation during synthesis nor destabilization over time. However, in contrast to latices obtained via classical free‐radical polymerization, the average particle size of the final latices was large, with broad particle size distributions. The initial [SG1]0/[alkoxyamine]0 molar ratio was shown to control the rate of polymerization. The fraction of SG1 released upon macroradical self‐termination was small with respect to the initial alkoxyamine concentration, indicating a very low fraction of dead chains. Average molar masses were controlled by the initial concentration of alkoxyamine and increased linearly with monomer conversion. The molar mass distribution was narrow, depending on the initial concentration of free nitroxide in the system. The initiator efficiency was lower than 1 at 112 °C but was very significantly improved when either a macroinitiator was used at 112 °C or the polymerization temperature was raised to 125 °C. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4410–4420, 2002 相似文献
12.
Anna C. Greene Robert B. Grubbs 《Journal of polymer science. Part A, Polymer chemistry》2009,47(23):6342-6352
The ester‐functional alkoxyamine 2,2‐dimethyl‐3‐(1‐(4‐(methoxycarbonyl)phenyl)ethoxy)‐4‐(4‐(methoxycarbonyl)phenyl)‐3‐azapentane ( 2 ) was efficiently synthesized for use as a functional initiator in nitroxide‐mediated polymerization. Two equivalents of 1‐(4‐(methoxycarbonyl)phenyl)ethyl radical were added across the double bond of 2‐methyl‐2‐nitrosopropane to form alkoxyamine 2 , which was found to control the polymerization of styrene, isoprene, and n‐butyl acrylate. The ester moieties were hydrolyzed for subsequent esterification with 1‐pyrenebutanol to form a dipyrene‐labeled initiator that was used to probe nitroxide end‐group fidelity after styrene polymerization. High retention of nitroxide was confirmed by UV‐vis studies over a range of monomer conversions. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6342–6352, 2009 相似文献
13.
Organotellurium‐mediated living radical polymerizations (TERPs) and organostibine‐mediated living radical polymerizations (SBRPs) provide well‐defined polymers with a variety of polar functional groups via degenerative chain‐transfer polymerization. The high controllability of these polymerizations can be attributed to the rapid degenerative‐transfer process between the polymer‐end radicals and corresponding dormant species. The versatility of the methods allows the synthesis of AB diblock, ABA triblock, and ABC triblock copolymers by the successive addition of different monomers. This review summarizes the current status of TERP and SBRP. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1–12, 2006 相似文献
14.
Huang Jianying Lin Jian Lin Minghua Lin Qiang Dai Lizong Zou Yousi 《Journal of polymer science. Part A, Polymer chemistry》2005,43(21):5246-5256
Malononitrile (MN), trifluoroacetic acid anhydride, acetylacetone, acetoacetic ester, and diethyl malonate have been identified as novel rate‐accelerating additives for nitroxide‐mediated living free‐radical polymerization. Among these additives, MN has the greatest accelerating effect. Adding MN at an MN/2,2,6,6‐tetramethylpiperidine‐oxyl (TEMPO) molar ratio of 4.0 results in a nearly 20 times higher rate of polymerization of styrene (St), and adding MN at an MN/TEMPO molar ratio of 2.5 results in a nearly 15 times higher rate of copolymerization of St and methyl methacrylate. The polymerization of St proceeds in a living fashion, as indicated by the increase in the molecular weight with time and conversion and the relatively low polydispersity. The polymerization rate of St is so quick that the conversion reaches 70% within 1 h at 125 °C when the molar ratio of MN to TEMPO is 4:1. Moreover, the reaction temperature can be reduced to 110 °C. A possible explanation for this effect is that the formation of hydrogen bonds between the MN and TEMPO moiety weakens the C? ON bond at the end of the polymer chain. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5246–5256, 2005 相似文献
15.
Paul Dervan Fawaz Aldabbagh Per B. Zetterlund Bunichiro Yamada 《Journal of polymer science. Part A, Polymer chemistry》2003,41(2):327-334
Styrene radical polymerizations mediated by the imidazolidinone nitroxides 2,5‐bis(spirocyclohexyl)‐3‐methylimidazolidin‐4‐one‐1‐oxyl (NO88Me) and 2,5‐bis(spirocyclohexyl)‐3‐benzylimidazolidin‐4‐one‐1‐oxyl (NO88Bn) were investigated. Polymeric alkoxyamine (PS‐NO88Bn)‐initiated systems exhibited controlled/living characteristics at 100–120 °C but not at 80 °C. All systems exhibited rates of polymerization similar to those of thermal polymerization, with the exception of the PS‐NO88Bn system at 80 °C, which polymerized twice as quickly. The dissociation rate constants (kd) for the PS‐NO88Me and PS‐NO88Bn coupling products were determined by electron spin resonance at 50–100 °C. The equilibrium constants were estimated to be 9.01 × 10?11 and 6.47 × 10?11 mol L?1 at 120 °C for NO88Me and NO88Bn, respectively, resulting in the combination rate constants (kc) 2.77 × 106 (NO88Me) and 2.07 × 106 L mol?1 s?1 (NO88Bn). The similar polymerization results and kinetic parameters for NO88Me and NO88Bn indicated the absence of any 3‐N‐transannular effect by the benzyl substituent relative to the methyl substituent. The values of kd and kc were 4–8 and 25–33 times lower, respectively, than the reported values for PS‐TEMPO at 120 °C, indicating that the 2,5‐spirodicyclohexyl rings have a more profound effect on the combination reaction rather than the dissociation reaction. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 327–334, 2003 相似文献
16.
Xiao‐Dong Zhao Xing‐He Fan Xiao‐Fang Chen Chun‐Peng Chai Qi‐Feng Zhou 《Journal of polymer science. Part A, Polymer chemistry》2006,44(15):4656-4667
The nitroxide‐mediated radical polymerization of styrene was carried out on the surfaces of multiwalled carbon nanotubes (MWNTs) initiated by an MWNT‐supported initiator multiwalled carbon nanotube–2″,2″,6″,6″‐tetramethylpiperidinyloxy (MWNT–Tempo). The content of polystyrene grafted from the surface was controlled by changes in the polymerization conditions, such as the reaction times or the ratios of monomers to initiators. The obtained polystyrene‐grafted multiwalled carbon nanotubes (MWNT–PSs) were further used to initiate the polymerization of 4‐vinylpyridine to get polystyrene‐b‐poly(4‐vinylpyridine)‐grafted multiwalled carbon nanotubes (MWNT–PS‐b‐P4VPs). In contrast to unmodified MWNTs, MWNT–PSs had relatively good dispersibility in various organic solvents, such as tetrahydrofuran, CHCL3, and o‐dichlorobenzene. The structures and properties of MWNT–PSs and MWNT–PS‐b‐P4VPs were characterized and studied with several methods, including thermogravimetric analysis, Fourier transform infrared, ultraviolet–visible, and transmission electron microscopy. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4656–4667, 2006 相似文献
17.
Jean Ruehl Niwat Ningnuek Thanchanok Thongpaisanwong Rebecca Braslau 《Journal of polymer science. Part A, Polymer chemistry》2008,46(24):8049-8069
A 5‐membered cyclic alkoxyamine and a 17‐membered cyclic alkoxyamine were synthesized and used in the polymerization of styrene. Polymerizations using the 5‐membered cyclic alkoxyamine resulted in polymers with uncontrolled molecular weights and high polydispersities. Polymerizations using the 17‐membered cyclic alkoxyamine produced oligomeric polymers in which multiple polymer chains are linked through NO‐C bonds. EPR homolysis experiments revealed that the 5‐membered cyclic alkoxyamine does not dissociate to form a nitroxide species, even at temperatures as high as 403 K. In contrast, the 17‐membered cyclic alkoxyamine does dissociate to form nitroxide, but the rate of dissociation is slower than that of parent acyclic alkoxyamine 2,2,5‐trimethyl‐3‐(1‐phenylethoxy)‐4‐phenyl‐3‐azahexane. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 8049–8069, 2008 相似文献
18.
Graft modification of crystalline nanocellulose by Cu(0)‐mediated SET living radical polymerization 下载免费PDF全文
Hai‐Dong Wang Ryan D. Roeder Ralph A. Whitney Pascale Champagne Michael F. Cunningham 《Journal of polymer science. Part A, Polymer chemistry》2015,53(24):2800-2808
Crystalline nanocellulose (CNC) was grafted with poly(methyl acrylate) (PMA) to yield modified CNC that is readily dispersed in a range of organic solvents [including tetrahydrofuran, chloroform, dimethylformamide, and dimethyl sulfoxide (DMSO)], in contrast to native CNC which is dispersible primarily in aqueous solutions. First, a CNC macroinitiator with high bromine initiator density was prepared through a 1,1′‐carbonyldiimidazole‐mediated esterification reaction in DMSO‐based dispersant. MA was then grafted from the CNC macroinitiator through SET living radical polymerization (LRP) at room temperature using Cu(0) (copper wire) as the catalyst. The LRP grafting proceeded rapidly, with ~30% monomer conversion achieved within 30 min, yielding approximately six times the mass of PMA with respect to CNC macroinitiator. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2800–2808 相似文献
19.
David H. Solomon 《Journal of polymer science. Part A, Polymer chemistry》2005,43(23):5748-5764
The background to the formation of the Commonwealth Scientific and Industrial Research Organization (CSIRO) polymer group is discussed. In particular, the challenges of working with high‐conversion polymerization, as found in commercial systems, and the need to explain variations in polymer properties led to important advances in the theory of radical polymerization and control over both the initiation and termination steps. Studies on the fate of the macromonomer, formed in termination by disproportionation, led to an early form of addition/fragmentation now known as reversible addition–fragmentation chain transfer, whereas detailed studies on initiation pathways using nitroxide trapping led to nitroxide‐mediated living radical polymerization. These studies contributed to the renaissance in free‐radical polymerization studies. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5748–5764, 2005 相似文献
20.
Jian‐Zhuang Chen Qiao‐Ling Zhao Li‐Ping Shi Jin Huang Guang‐Yu Li Shu‐Yuan Zhang Zhi Ma 《Journal of polymer science. Part A, Polymer chemistry》2009,47(21):5671-5681
A combination of living polymerization of ylides and atom transfer radical polymerization (ATRP) was used successfully in the design and synthesis of well‐defined polymethylene‐b‐poly(methyl methacrylate) (PM‐b‐PMMA) and polymethylene‐b‐poly(n‐butyl acrylate) (PM‐b‐Pn‐BuA). Tripolymethylene borane were firstly synthesized by living polymerization of dimethylsulfoxonium methylides and then oxidated quantitatively through trimethylamine‐N‐oxide dihydrate to provide a series of low‐polydispersity hydroxyl‐terminated polymethylenes (PM‐OHs) with different molecular weight. Subsequently, such polymers were converted into polymethylene‐based macroinitiators (PM‐MIs, Mn(GPC) = 1900–10,400 g/mol; Mw/Mn = 1.12–1.23) in ~100% conversion. ATRPs of methyl methacrylate and n‐butyl acrylate were successfully conducted using PM‐MI to produce well‐defined diblock copolymers of PM‐b‐PMMA and PM‐b‐Pn‐BuA, respectively. The GPC traces indicated the successful extension of PMMA and Pn‐BuA segment (Mn(GPC) of PM‐b‐PMMA = 3980–10,100 g/mol; Mw/Mn = 1.16–1.22; Mn of PM‐b‐Pn‐BuA = 7400–9200 g/mol; Mw/Mn = 1.14–1.18). Atomic force microscopy (AFM) was used to characterize the structures of the precipitated PM‐b‐PMMA micelles, which were formed in toluene. The blend of LDPE/PMMA was prepared with PM‐b‐PMMA as compatibilizer. The scanning electron microscopy (SEM) results showed that the compatibilization of the LDPE/PMMA was improved greatly by the incorporation of PM‐b‐PMMA. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5671–5681, 2009 相似文献