首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The new analytical relations for the relativistic vector wave functions and Slater type relativistic vector orbitals in coordinate, momentum and four-dimensional spaces are derived using the properties of quasirelativistic vector spherical harmonics introduced by the author in previous paper (I.I. Guseinov, J. Math. Chem., 44, 197 (2008)) and complete orthonormal scalar basis sets of nonrelativistic ψ α -exponential type orbitals (ψ α -ETO), -momentum space orbitals (-MSO) and z α -hyperspherical harmonics (z α -HSH). The 6-component relativistic vector wave functions obtained are complete without the inclusion of the continuum. The relativistic vector wave function sets and Slater type relativistic vector orbitals are expressed through the corresponding quasirelativistic vector wave functions and Slater vector orbitals, respectively. The analytical formulas are also derived for overlap integrals over Slater type relativistic vector orbitals with the same screening constants in coordinate space.  相似文献   

2.
It is well known that in any ab initio molecular orbital (MO) calculation, the major task involves the computation of molecular integrals, among which the computation of Coulomb integrals are the most frequently encountered. As the molecular system gets larger, computation of these integrals becomes one of the most laborious and time consuming steps in molecular systems calculation. Improvement of the computational methods of molecular integrals would be indispensable to a further development in computational studies of large molecular systems. The atomic orbital basis functions chosen in the present work are Slater type functions. These functions can be expressed as finite linear combinations of B functions which are suitable to apply the Fourier transform method. The difficulties of the numerical evaluation of the analytic expressions of the integrals of interest arise mainly from the presence of highly oscillatory semi-infinite integrals. In this work, we present a generalized algorithm based on the nonlinear transformation of Sidi, for a precise and fast numerical evaluation of molecular integrals over Slater type functions and over B functions. Numerical results obtained for the three-center two-electron Coulomb and hybrid integrals over B functions and over Slater type functions. Comparisons with numerical results obtained using alternatives approaches and an existing code are listed.  相似文献   

3.
Using the properties of tensor spherical harmonics introduced by the author in previous paper (Guseinov, Phys Lett A 372:44, 2007) and complete orthonormal scalar basis sets of nonrelativistic -exponential type orbitals ( -ETO), - momentum space orbitals ( -MSO) and z α-hyperspherical harmonics (z α-HSH) for particles with spin s = 0 the new analytical relations for the quasirelativistic and relativistic spinor wave functions and Slater spinor orbitals in coordinate, momentum and four-dimensional spaces are derived, where α = 1, 0, −1, −2,.... The 2-component quasirelativistic and 4-component relativistic spinor wave functions obtained are complete without the inclusion of the continuum. The relativistic spinor wave function sets and Slater spinor orbitals are expressed through the corresponding quasirelativistic spinor wave functions and Slater spinor orbitals, respectively. The analytical formulas for overlap integrals over quasirelativistic and relativistic Slater spinor orbitals with the same screening constants in coordinate space are also derived.  相似文献   

4.
A simple technique of scaling two-electron integrals in ab initio calculations of the electronically excited states of transition metal complexes is proposed. This technique uses the fact that one-center two-electron integrals depend linearly on the scaling factor when Slater type functions are subjected to scaling transformation. This leads to a linear dependence of the d—d transition energy on the “scale” of Coulomb interaction, which allows one to affect the calculation result by varying the Slater exponential. To test the technique, ab initio configuration interaction and full active space calculations of the low excited states of the CrF 6 3- , MnF 6 2- , and VF 6 3- complexes are performed. For transition elements, a basis of Slater type effective functions chosen from the optical spectra of the atoms and ions of transition elements is used. It is shown that in the STO-6G basis with effective exponentials, experimental transitions are reproduced with an accuracy of about 2000 cm-1 even with the use of small active space determined by the orbitals localized on the central atom of the complex.  相似文献   

5.
Numerical, adaptive algorithm evaluating the overlap integrals between the Numerical Type Orbitals (NTO) is presented. The described algorithm exploits the properties of the prolate ellipsoidal coordinates, which are the natural choice for two-center overlap integrals. The algorithm is designed for numerical atomic orbitals with the finite support. Since the cusp singularity of the atomic orbitals vanish in the prolate ellipsoidal coordinate system, the adaptive integration algorithm in generates small number of subdivisions. The efficiency and reliability of the algorithm is demonstrated for the overlap integrals evaluated for the selected pairs of Slater Type Orbitals (STO).  相似文献   

6.
The Gauss transform of Slater‐type orbitals is used to express several types of molecular integrals involving these functions in terms of simple auxiliary functions. After reviewing this transform and the way it can be combined with the shift operator technique, a master formula for overlap integrals is derived and used to obtain multipolar moments associated to fragments of two‐center distributions and overlaps of derivatives of Slater functions. Moreover, it is proved that integrals involving two‐center distributions and irregular harmonics placed at arbitrary points (which determine the electrostatic potential, field and field gradient, as well as higher order derivatives of the potential) can be expressed in terms of auxiliary functions of the same type as those appearing in the overlap. The recurrence relations and series expansions of these functions are thoroughly studied, and algorithms for their calculation are presented. The usefulness and efficiency of this procedure are tested by developing two independent codes: one for the derivatives of the overlap integrals with respect to the centers of the functions, and another for derivatives of the potential (electrostatic field, field gradient, and so forth) at arbitrary points. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

7.
By the use of expansion and one‐range addition theorems, the one‐electron molecular integrals over complete orthonormal sets of Ψα ‐exponential type orbitals arising in Hartree–Fock–Roothaan equations for molecules are evaluated. These integrals are expressed through the auxiliary functions in ellipsoidal coordinates. The comparison is made using Slater‐, Coulomb‐Sturmian‐, and Lambda‐type basis functions. Computation results are in good agreement with those obtained in the literature. The relationships obtained are valid for the arbitrary quantum numbers, screening constants, and location of orbitals. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

8.
Many types of molecular integrals involving Slater functions can be expressed, with the ζ‐function method in terms of sets of one‐dimensional auxiliary integrals whose integrands contain two‐range functions. After reviewing the properties of these functions (including recurrence relations, derivatives, integral representations, and series expansions), we carry out a detailed study of the auxiliary integrals aimed to facilitate both the formal and computational applications of the ζ‐function method. The usefulness of this study in formal applications is illustrated with an example. The high performance in numerical applications is proved by the development of a very efficient program for the calculation of two‐center integrals with Slater functions corresponding to electrostatic potential, electric field, and electric field gradient. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

9.
Korobov theory for multidimensional numerical integration is used to evaluate electronic integrals. This paper shows the important role played by periodization techniques. Singularity (r 12 ?1 ) in the bielectronic six-dimensional integrals is removed through a twofold three-dimensional integration. Results are presented for atomic integrals involving Slater type atomic orbitals.  相似文献   

10.
Closed formulas are established for the magnetic multipole moment integrals of integer and noninteger n Slater‐type orbitals (ISTOs and NISTOs) in terms of electric multipole moment integrals for which the analytic expressions through the overlap integrals with ISTOs and NISTOs are derived. The overlap integrals are evaluated by the use of auxiliary functions. Using the derived expressions the multipole moment integrals, and therefore the electric and magnetic properties of molecules, can be evaluated most efficiently and accurately. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2003  相似文献   

11.
The accuracy of the hyperfine integrals obtained in relativistic NMR computations based on the zeroth–order regular approximation (ZORA) is investigated. The matrix elements of the Fermi contact operator and its relativistic analogs for s orbitals obtained from numerical nonrelativistic, ZORA, and four–component Hartree–Fock–Slater calculations on atoms are compared. It is found that the ZORA yields very accurate hyperfine integrals for the valence shells of heavy atoms, but performs rather poorly for the innermost core shells. Because the important observables of the NMR experiment—chemical shifts and spin–spin coupling constants—can be understood as valence properties it is concluded that ZORA computations represent a reliable tool for the investigations of these properties. On the other hand, absolute shieldings calculated with the ZORA might be substantially in error. Because applications to molecules have so far exclusively been based on basis set expansions of the molecular orbitals, ZORA hyperfine integrals obtained from atomic Slater-type basis set computations for mercury are compared with the accurate numerical values. It is demonstrated that the core part of the basis set requires functions with Slater exponents only up to 104 in the case where errors in the hyperfine integrals of a few percent are acceptable.  相似文献   

12.
An efficient method for computing overlap integral over Slater type orbitals based on the B Filter-Steinborn and Guseinov auxiliary functions is presented. The final results are expressed through the binomial coefficients with the help of which the overlap integrals can be evaluated efficiently and accurately. The results of calculation are in good agreement with those obtained by other method for arbitrary principal quantum numbers and different screening constants. An erratum to this article can be found at  相似文献   

13.
A new method for calculating 3-center one-electron integrals and matrix elements of electron interaction of $\left\langle {AB|CC'} \right\rangle $ type in MO LCAO theory, where A, B, and C are the centers of exponential type AO including Slater and hydrogen-like basis functions, has been developed. Integrals of this type are reduced to double integrals over the square with edge 1. This provides the grounds for effective calculation of quantum-chemical 3-center integrals in a basis of exponential type spherical functions.  相似文献   

14.
In this paper, a unified analytical and numerical treatment of overlap integrals between Slater type orbitals (STOs) and irregular Solid Harmonics (ISH) with different screening parameters is presented via the Fourier transform method. Fourier transform of STOs is probably the simplest to express of overlap integrals. Consequently, it is relatively easy to express the Fourier integral representations of the overlap integrals as finite sums and infinite series of STOs, ISHs, Gegenbauer, and Gaunt coefficients. The another mathematical tools except for Fourier transform have used partial-fraction decomposition and Taylor expansions of rational functions. Our approach leads to considerable simplification of the derivation of the previously known analytical representations for the overlap integrals between STOs and ISHs with different screening parameters. These overlap integrals have also been calculated for extremely large quantum numbers using Gegenbauer, Clebsch-Gordan and Binomial coefficients. The accuracy of the numerical results is quite high for the quantum numbers of Slater functions, irregular solid harmonic functions and for arbitrary values of internuclear distances and screening parameters of atomic orbitals.  相似文献   

15.
The efficient algorithm calculating the overlap and the kinetic integrals for the numerical atomic orbitals is presented. The described algorithm exploits the properties of the prolate spheroidal coordinates. The overlap and the kinetic integrals in ?3 are reduced to the integrals over the rectangular domain in ?2, what substantially reduces the complexity of the problem. We prove that the integrand over the rectangular domain is continuous and does not have any slope singularities. For calculation of the integral over the rectangle any adaptive algorithm can be applied. The exemplary results were obtained by application of the adaptive Gauss quadrature. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

16.
Slater orbital r12?1 integrals are calculated with a numerical Fourier-transform method based on a formulation first given by Bonham, Peacher and Cox. Spherical wave expansions are introduced that decouple the Feynman integrations for the charge distribution Fourier transforms. The Feynman integrals are evaluated semianalytically, and their properties are analyzed in detail. The final computational step involves a numerical integration over charge distribution quantities. Results for (coplanar) multicenter exchange integrals over 1s orbitals are given. As long as the charge distributions are overlapping considerably, the method gives good results, even when these distributions are highly asymmetric. The method as presently implemented fails when highly disconnected charge distributions are involved.  相似文献   

17.
A general analytic formula is obtained for the two‐center Coulomb integrals over Slater‐type orbitals in elliptical coordinates. Finite series expansions are used in the evaluation of the radial part of the integrals. The analytic formula is expressed in terms of a product of the well‐known auxiliary functions Ak(p) and Bk(p) and incomplete gamma functions. Recursive relations for the computer evaluation of these functions are given as well. The recursive relations are stable and our computer results are in good agreement with the benchmark values given in the literature. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2003  相似文献   

18.
A new program for computing all the integrals appearing in molecular calculations with Slater‐type orbitals (STO) is reported. This program follows the same philosophy as the reference pogram previously reported but introduces two main changes: Local symmetry is profited to compute all the two‐electron integrals from a minimal set of seed integrals, and a new algorithm recently developed is used for computing the seed integrals. The new code reduces between one and two orders of magnitude the computational cost in most polyatomic systems. © 2001 John Wiley & Sons, Inc. Int J Quant Chem 81: 148–153, 2001  相似文献   

19.
A modification of the MNDO method is suggested based on the relation ζAA 0(1 + ϰAQA) for Slater parameters that takes into account the dependence of overlap integrals and the MNDO parameters (expressed via these integrals) on atomic charges QA. The core parameters Uμμ include corrections for nonorthogonality of basis functions of atoms in a molecule. For free atoms, the parameters were determined from the condition of reproducible electron affinities. The method is advantageous for calculating the heats of formation of anions, particularly those with the charge concentrated on one atom. Institute of Chemical Kinetics and Combustion, Siberian Branch, Russian Academy of Sciences. Translated fromZhurnal Strukturnoi Khimii, Vol. 35, No. 1, pp. 3–11, January-February, 1994. Translated by O. Kharlamova  相似文献   

20.
The regularization principle, which is based on the concept of linearly independent singular functions, makes it possible to calculate many important types of molecular matrix elements arising in the variational LCAO-MO-SCF scheme. This is done using a direct approach that employs reduction of these elements to finite sums of convergent and divergent one-electron integrals. A universal algorithm is developed to calculate two-center one-electron molecular integrals involving both singular and ordinary Slater functions. The numerical stability of the algorithms and the accuracy of the integral calculation are analyzed, and numerical estimates are given. V. I. Vernadskii Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences. Translated fromZhurnal Struktunoi Khimii, Vol. 35, No. 2, pp. 3–11, March–April, 1994. Translated by L. Chernomorskaya  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号