首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A synchrotron study is presented in which the concept of one‐dimensional tomographic reconstruction of small‐angle X‐ray scattering patterns is applied to investigate polyamide 6 monofilaments, dip‐coated with alumina particles. The filaments are scanned with a focused synchrotron beam and the resulting scattering patterns are recorded with a PILATUS 2M detector. The reconstructed sequence of SAXS images reflects the local nanostructure variation along the filament radius. In particular, the influence of coating process parameters on the polyamide 6 is investigated.  相似文献   

2.
The application of a two‐dimensional photon‐counting detector based on a micro‐pixel gas chamber (µ‐PIC) to high‐resolution small‐angle X‐ray scattering (SAXS), and its performance, are reported. The µ‐PIC is a micro‐pattern gaseous detector fabricated by printed circuit board technology. This article describes the performance of the µ‐PIC in SAXS experiments at SPring‐8. A dynamic range of >105 was obtained for X‐ray scattering from a polystyrene sphere solution. A maximum counting rate of up to 5 MHz was observed with good linearity and without saturation. For a diffraction pattern of collagen, weak peaks were observed in the high‐angle region in one accumulation of photons.  相似文献   

3.
In structure analyses of proteins in solution by using small‐angle X‐ray scattering (SAXS), the molecular models are restored by using ab initio molecular modeling algorithms. There can be variation among restored models owing to the loss of phase information in the scattering profiles, averaging with regard to the orientation of proteins against the direction of the incident X‐ray beam, and also conformational fluctuations. In many cases, a representative molecular model is obtained by averaging models restored in a number of ab initio calculations, which possibly provide nonrealistic models inconsistent with the biological and structural information about the target protein. Here, a protocol for classifying predicted models by multivariate analysis to select probable and realistic models is proposed. In the protocol, each structure model is represented as a point in a hyper‐dimensional space describing the shape of the model. Principal component analysis followed by the clustering method is applied to visualize the distribution of the points in the hyper‐dimensional space. Then, the classification provides an opportunity to exclude nonrealistic models. The feasibility of the protocol was examined through the application to the SAXS profiles of four proteins.  相似文献   

4.
The first application of a pnCCD detector for X‐ray scattering experiments using white synchrotron radiation at BESSY II is presented. A Cd arachidate multilayer was investigated in reflection geometry within the energy range 7 keV < E < 35 keV. At fixed angle of incidence the two‐dimensional diffraction pattern containing several multilayer Bragg peaks and respective diffuse‐resonant Bragg sheets were observed. Since every pixel of the detector is able to determine the energy of every incoming photon with a resolution ΔE/E? 10?2, a three‐dimensional dataset is finally obtained. In order to achieve this energy resolution the detector was operated in the so‐called single‐photon‐counting mode. A full dataset was evaluated taking into account all photons recorded within 105 detector frames at a readout rate of 200 Hz. By representing the data in reciprocal‐space coordinates, it becomes obvious that this experiment with the pnCCD detector provides the same information as that obtained by combining a large number of monochromatic scattering experiments using conventional area detectors.  相似文献   

5.
A multiple‐analyser‐crystal spectrometer for non‐resonant inelastic X‐ray scattering spectroscopy installed at beamline ID16 of the European Synchrotron Radiation Facility is presented. Nine analyser crystals with bending radii R = 1 m measure spectra for five different momentum transfer values simultaneously. Using a two‐dimensional detector, the spectra given by all analysers can be treated individually. The spectrometer is based on a Rowland circle design with fixed Bragg angles of about 88°. The energy resolution can be chosen between 30–2000 meV with typical incident‐photon energies of 6–13 keV. The spectrometer is optimized for studies of valence and core electron excitations resolving both energy and momentum transfer.  相似文献   

6.
A confocal full‐field X‐ray microscope has been developed for use as a novel three‐dimensional X‐ray imaging method. The system consists of an X‐ray illuminating `sheet‐beam' whose beam shape is micrified only in one dimension, and an X‐ray full‐field microscope whose optical axis is normal to the illuminating sheet beam. An arbitral cross‐sectional region of the object is irradiated by the sheet‐beam, and secondary X‐ray emission such as fluorescent X‐rays from this region is imaged simultaneously using the full‐field microscope. This system enables a virtual sliced image of a specimen to be obtained as a two‐dimensional magnified image, and three‐dimensional observation is available only by a linear translation of the object along the optical axis of the full‐field microscope. A feasibility test has been carried out at beamline 37XU of SPring‐8. Observation of the three‐dimensional distribution of metallic inclusions in an artificial diamond was performed.  相似文献   

7.
A new small‐angle scattering technique in reflection geometry is described which enables a topological study of rough surfaces. This is achieved by using long‐wavelength soft X‐rays which are scattered at wide angles but in the low‐Q range normally associated with small‐angle scattering. The use of nanometre‐wavelength radiation restricts the penetration to a thin surface layer which follows the topology of the surface, while moving the scattered beam to wider angles preventing shadowing by the surface features. The technique is, however, only applicable to rough surfaces for which there is no specular reflection, so that only the scattered beam was detected by the detector. As an example, a study of the surfaces of rough layers of silicon produced by the deposition of nanoparticles by blade‐coating is presented. The surfaces of the blade‐coated layers have rough features of the order of several micrometers. Using 2 nm and 13 nm X‐rays scattered at angular ranges of 5°≤θ≤ 51° and 5°≤θ≤ 45°, respectively, a combined range of scattering vector of 0.00842 Å?1Q≤ 0.4883 Å?1 was obtained. Comparison with previous transmission SAXS and USAXS studies of the same materials indicates that the new method does probe the surface topology rather than the internal microstructure.  相似文献   

8.
Characterization and testing of an L‐shaped laterally graded multilayer mirror are presented. This mirror is designed as a two‐dimensional collimating optics for the analyzer system of the ultra‐high‐resolution inelastic X‐ray scattering (IXS) spectrometer at National Synchrotron Light Source II (NSLS‐II). The characterization includes point‐to‐point reflectivity measurements, lattice parameter determination and mirror metrology (figure, slope error and roughness). The synchrotron X‐ray test of the mirror was carried out reversely as a focusing device. The results show that the L‐shaped laterally graded multilayer mirror is suitable to be used, with high efficiency, for the analyzer system of the IXS spectrometer at NSLS‐II.  相似文献   

9.
As an increasingly important structural‐characterization technique, grazing‐incidence X‐ray scattering (GIXS) has found wide applications for in situ and real‐time studies of nanostructures and nanocomposites at surfaces and interfaces. A dedicated beamline has been designed, constructed and optimized at beamline 8‐ID‐E at the Advanced Photon Source for high‐resolution and coherent GIXS experiments. The effectiveness and applicability of the beamline and the scattering techniques have been demonstrated by a host of experiments including reflectivity, grazing‐incidence static and kinetic scattering, and coherent surface X‐ray photon correlation spectroscopy. The applicable systems that can be studied at 8‐ID‐E include liquid surfaces and nanostructured thin films.  相似文献   

10.
Non‐degenerate second‐order scattering due to interaction of infrared and ultraviolet pulses is observed in picosecond infrared‐pump/anti‐Stokes Raman‐probe experiments under electronic resonance conditions. We detected resonance hyper‐Rayleigh scattering at the sum frequency of the pulses as well as the corresponding frequency‐down‐shifted resonance hyper‐Raman lines. Nearly coinciding resonance hyper‐Raman and one‐photon resonance Raman spectra indicate conditions of A‐term resonance Raman scattering. Second‐order scattering is distinguished from transient anti‐Stokes Raman scattering of v = 1 to v = 0 transitions and v = 1 to v′ = 1 combination transitions by taking into account their different spectral and temporal behaviour. Separating these processes is essential for a proper analysis of transient vibrational populations. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
The transmission and reflection amplitudes of an electron moving in a one dimensional potential of arbitrary form are obtained using the transfer matrix method. It is shown that the one‐dimensional scattering problem, in its most general form, can be reduced to Cauchy problem for a set of two linear differential equations.  相似文献   

12.
The development of medium‐energy inelastic X‐ray scattering optics with meV and sub‐meV resolution has attracted considerable efforts in recent years. Meanwhile, there are also concerns or debates about the fundamental and feasibility of the involved schemes. Here the central optical component, the back‐reflection angular‐dispersion monochromator or analyzer, is analyzed. The results show that the multiple‐beam diffraction effect together with transmission‐induced absorption can noticeably reduce the diffraction efficiency, although it may not be a fatal threat. In order to improve the efficiency, a simple four‐bounce analyzer is proposed that completely avoids these two adverse effects. The new scheme is illustrated to be a feasible alternative approach for developing meV‐ to sub‐meV‐resolution inelastic X‐ray scattering spectroscopy.  相似文献   

13.
A three‐dimensional surface‐enhanced Raman scattering (SERS) substrate via the self‐assembly of properly sized Au nanoparticles in anodic aluminum oxide templates was designed and prepared. Au nanoparticles first underwent hydrophobic surface modification. Then, the hydrophobic Au nanoparticles self‐assembled, aggregated and formed many hot spots in the anodic aluminum oxide templates through a supramolecular interaction. We chose thiophenol as a probe molecule to evaluate the SERS enhancement ability of this three‐dimensional substrate. The enhancement factor was calculated to be 4.6 × 106 under the radiation of a 785‐nm laser. By further comparing SERS signals from different points on the same substrate, we confirmed that this substrate possessed good reproducibility and could be applied for SERS detection. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
A new three‐dimensional graphics program, SaxsMDView, is described. The program performs a three‐dimensional graphical representation for protein molecules along with the force vector (or vector potential) applying to each atom. The displayed object can be rotated and translated in arbitrary directions by interactive mouse manipulation. While SaxsMDView was originally intended to visualize the result of SAXS_MD, a previously developed program based on the restrained molecular dynamics with small‐angle X‐ray scattering constraints, it can also be useful for graphical representation of other objects such as coarse‐grained molecular models reconstructed by ab initio modelling or solvent site‐dipole field vectors induced around the protein molecule. Some examples of the application of the program including the graphical analyses of the results with SAXS_MD are also presented.  相似文献   

15.
A novel setup for containment‐free time‐resolved experiments at a free‐hanging drop is reported. Within a dead‐time of 100 ms a drop of mixed reactant solutions is formed and the time evolution of a reaction can be followed from thereon by various techniques. As an example, a small‐angle X‐ray scattering study on the formation mechanism of EDTA‐stabilized CdS both at a synchrotron and a laboratory X‐ray source is presented here. While the evolution can be followed with one drop only at a synchrotron source, a stroboscopic mode with many drops is preferable for the laboratory source.  相似文献   

16.
The multi‐purpose experimental endstation of beamline BL9 at the Dortmund Electron Accelerator (DELTA) is dedicated to diffraction experiments in grazing‐incidence geometry, reflectivity and powder diffraction measurements. Moreover, fluorescence analysis and inelastic X‐ray scattering experiments can be performed. Recently, a new set‐up for small‐angle and wide‐angle X‐ray scattering utilizing detection by means of an image‐plate scanner was installed and is described in detail here. First small‐angle X‐ray scattering experiments on aqueous solutions of lysozyme with different cosolvents and of staphylococcal nuclease are discussed. The application of the set‐up for texture analysis is emphasized and a study of the crystallographic texture of natural bio‐nanocomposites, using lobster and crab cuticles as model materials, is presented.  相似文献   

17.
We propose a new approach to high‐intensity relativistic laser‐driven electron acceleration in a plasma. Here, we demonstrate that a plasma wave generated by a stimulated forward‐scattering of an incident laser pulse can be in the longest acceleration phase with injected relativistic beam electrons. This is why the plasma wave has the maximum amplification coefficient which is determined by the acceleration time and the breakdown (overturn) electric field in which the acceleration of the injected beam electrons occurs. We must note that for the longest acceleration phase the relativity of the injected beam electrons plays a crucial role in our scheme. We estimate qualitatively the acceleration parameters of relativistic electrons in the field of a plasma wave generated at the stimulated forward‐scattering of a high‐intensity laser pulse in a plasma. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
An end‐station for X‐ray Raman scattering spectroscopy at beamline ID20 of the European Synchrotron Radiation Facility is described. This end‐station is dedicated to the study of shallow core electronic excitations using non‐resonant inelastic X‐ray scattering. The spectrometer has 72 spherically bent analyzer crystals arranged in six modular groups of 12 analyzer crystals each for a combined maximum flexibility and large solid angle of detection. Each of the six analyzer modules houses one pixelated area detector allowing for X‐ray Raman scattering based imaging and efficient separation of the desired signal from the sample and spurious scattering from the often used complicated sample environments. This new end‐station provides an unprecedented instrument for X‐ray Raman scattering, which is a spectroscopic tool of great interest for the study of low‐energy X‐ray absorption spectra in materials under in situ conditions, such as in operando batteries and fuel cells, in situ catalytic reactions, and extreme pressure and temperature conditions.  相似文献   

19.
Area detectors have become the predominant type of detector for the rapid acquisition of X‐ray diffraction, small‐angle scattering and total scattering. These detectors record the scattering for a large area, giving each shot good statistical significance to the resulting scattered intensity I(Q) pattern. However, many of these detectors have pixel level defects, which cause error in the resulting one‐dimensional patterns. In this work, new software to automatically find and mask these dead pixels and other defects is presented. This algorithm is benchmarked with both ideal simulated and experimental datasets.  相似文献   

20.
X‐ray Raman scattering (XRS) provides a bulk‐sensitive method of measuring the extended X‐ray absorption fine structure (EXAFS) of soft X‐ray absorption edges. Accurate measurements and data analysis procedures for the determination of XRS‐EXAFS of polycrystalline diamond are described. The contributions of various angular‐momentum components beyond the dipole limit to the atomic background and the EXAFS oscillations are incorporated using self‐consistent real‐space multiple‐scattering calculations. The properly extracted XRS‐EXAFS oscillations are in good agreement with calculations and earlier soft X‐ray EXAFS results. It is shown, however, that under certain conditions multiple‐scattering contributions to XRS‐EXAFS deviate from those in standard EXAFS, leading to noticeable changes in the real‐space signal at higher momentum transfers owing to non‐dipole contributions. These results pave the way for the accurate application of XRS‐EXAFS to previously inaccessible light‐element systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号