首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The chemical oxidation of aniline with ammonium peroxydisulfate to form polyaniline (PANI) films has been studied in different aqueous acid mediums such as HCl, HNO3, and H2SO4. The yield and the growth rate of the PANI film deposition were measured using the quartz crystal microbalance (QCM) technique. The effect of different salts such as KCl, NaNO3, and K2SO4 and their concentration on the yield and the growth rate of the film formation are investigated. The yield of PANI film deposition depends on the acid used and the type of salts as well as their concentrations. When HCl and HNO3 were used as media, the addition of salts with the same anion has no effect. However, when H2SO4 was used as media, the addition of salts with the same anions as the medium enhances the yield of PANI film deposition. The UV–visible spectra of the produced PANI films in the absence and presence of the salts are also studied. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
Quartz crystal microbalance with dissipation (QCM-D) monitoring is a powerful tool used to sensitively examine the real-time responses of polymer films to external responses. For example, the technique is commonly used to monitor film growth, material adsorption, thin film swelling, and ion exchange. With its rapidly expanding use, this review is intended to introduce new users to the basic principles of QCM-D, along with practical challenges and remedies specific to polymer thin films. For both new and experienced users, specific case studies are highlighted including layer-by-layer assembly, electrochemical QCM-D, swelling, sensing, and biological application. Last, the review recommends future directions for research and areas of growth.  相似文献   

3.
The electrochemical quartz crystal microbalance (EQCMB) method has been used to evaluate the processes which occur in/on the palladium electrode in basic solutions. Hydrogen electrosorption in palladium is accompanied by an additional frequency shift that can be attributed to the stresses generated inside the Pd metal. A non-linear dependence between the mass change and the charge consumed during hydrogen oxidation in the Pd electrode has been found for hydrogen absorbed in the α- and β-phases. This effect precludes the objective estimation of the amount of hydrogen absorbed inside the Pd electrode. The EQCMB method has been used, however, for studying the surface electrode processes on the Pd electrode, i.e. specific anion adsorption, surface oxidation and dissolution. Also, the structure of the palladium oxide formed on the Pd surface during electrochemical oxidation is discussed in this paper and the effect of the anodic limiting potential on the oxide structure is reported. Received: 10 August 1999 / Accepted: 24 September 1999  相似文献   

4.
An immunosensor for the determination of okadaic acid (OA) using a quartz crystal microbalance (QCM) was developed and optimised in standard solutions. Several coupling techniques, protein A, protein G and polyethylenimine (PEI) with glutaraldehyde (GA) cross-linking, were investigated for the determination of okadaic acid and a very good result was obtained with PEI coupling. With the PEI coupling method, the optimisation of incubation time for the activation of PEI on the crystal surface using GA, the effect of the dilution factor of OA-bovine serum albumin (BSA) conjugate and the amount of antibody on crystal frequency were studied. Different molar ratios (4:1, 14:1, 30:1) of OA to bovine serum albumin for the conjugation were examined and the results using ELISA and a QCM showed that a ratio of 14:1 was slightly better than the other two. The strong attachment of the cross-linked complex to the gold surface resulted in an excellent storage lifetime of 38 days. However, the detection limit (1.9 μg/ml) and the sensitivity of the sensor were not satisfactory. Significant improvement of the performance of the device was obtained by incorporating an antibody-BSA hydrogel. Initial results showed that the minimum amount of analyte detectable and the sensitivity of the device were improved by 524- and 80-fold, respectively.  相似文献   

5.
Electrochemical quartz crystal microbalance studies on poly(pyrrole) electrodes revealed a complex nature of the potential-dependent sorption of ionic substances. It is found that the relative contribution of anions and cations to the overall charge transport process depends upon several factors, such as the oxidation state of the polymer, the composition of the supporting electrolyte as well as on the film thickness. The phenomena observed are discussed in terms of morphological transformations arising as a result of interactions between the polymer and the mobile substances. Received: 21 August 1998 / Accepted: 21 October 1998  相似文献   

6.
Determining the blood glucose level is important for the prevention and treatment of diabetes mellitus. We developed a sensor system using Quartz Crystal Microbalance (QCM) to determine the blood glucose level from human blood serum. This study consists of two experimental stages: artificial glucose/pure water solution tests and human blood serum tests. In the first stage of the study, the QCM sensor with the highest performance was identified using artificial glucose solution concentrations. In the second stage of the study, human blood serum measurements were performed using QCM to determine blood glucose levels. QCM sensors were coated with phthalocyanines (Pcs) by jet spray method. The blood glucose values of 96 volunteers, which ranged from 71 mg/dL to 329 mg/dL, were recorded. As a result of the study, human glucose values were determined with an average error of 3.25%.  相似文献   

7.
8.
A two-channel electrochemical quartz crystal microbalance (EQCM) was used to investigate the cyclic voltammetric behavior of two Prussian blue (PB) film-modified Au electrodes in a two-electrode con-figuration in aqueous solution. The redox peaks observed in the two-electrode cyclic voltammogram (CV) are assigned to the intrinsic redox transitions among the Everitt's salt, PB, and Prussian yellow for the film itself, the redox process of the Au substrate and the redox process of small-quantity ferri-/ferrocyanide impurities entrapped in the PB film, as also supported by ultraviolet-visible (UV-Vis) spectroelectrochemical data. The profile of the two-electrode solid-state CV for the PB powder sand-wiched between two gold-coated indium-tin oxide (ITO) electrodes is similar to that for two PB-modified Au electrodes in aqueous solution, implying similar origins for the corresponding redox peaks. The two-channel EQCM method is expected to become a highly effective technique for the studies of the two-electrode electrochemical behaviors of many other species/materials.  相似文献   

9.
A new method for the quantitative determination of palladium(II) by the electrochemical quartz crystal microbalance (EQCM) technique has been developed. Using a bare carbon-coated quartz crystal, Pd(II) ions are directly deposited from aqueous solution as palladium metal onto the crystal surface, and the Pd(II) concentration is determined with a detection limit of 0.0156 mM, or 1.66 ppm. No complexing agent or preconcentration of palladium is required for the analysis. The palladium is stripped from the crystal through its electrochemical oxidation, regenerating the crystal for subsequent multi-cycle palladium analyses. A conventional gold-coated quartz crystal was incapable of carrying out the same measurements. The EQCM technique presented is simple, sensitive, and reproducible for the detection of this widely used precious metal.  相似文献   

10.
We describe a novel and generally applicable approach for creating voids in films deposited on the surface of solid substrates. Such films are advantageous when a quartz crystal microbalance (QCM) is the basis of a sensor. We show that films with large void volumes produce more sensitive sensors than with the original film. Poly(methylmethacrylate) (PMMA) was used as the polymer layer deposited on a quartz crystal microbalance (QCM) to demonstrate our technique for the model system of water vapor analysis in flowing nitrogen gas. A film of pure PMMA on a QCM is a sensor for water vapor in a gas phase. A more sensitive sensor was created by dip coating QCM crystals into solutions containing mixtures of PMMA and poly(d,l-lactide) (PDLL) and then evaporating the solution films on the QCM crystals to form mixed polymer films of varying PDLL content. The PDLL was then removed from the mixed polymer films by exposure to a NaOH solution to form pure PMMA films having various void volumes. A leached PMMA film that originally contained 50% by weight PDLL had a 3.7 times larger QCM sensitivity for water vapor than a pure PMMA film.  相似文献   

11.
The electrochemical quartz crystal microbalance results show that nickel electrodissolution and nickel passivation occur simultaneously. Besides, the anodic transferred charge decreases and the passive layer thickness increases with the number of successive voltammetric cycles. Mass balances across the metal/passive layer/solution have been done from the instantaneous F(dm/dQ) function. A dynamic process for generation of an inner NiO and a Ni(OH)2 outer passive layers is suggested.  相似文献   

12.
An electrochemical quartz crystal impedance system (EQCIS) which allows rapid and simultaneous measurements of admittance spectra of piezoelectric quartz crystal resonance during electrochemical processes was developed by combining an HP 4395A Network/Spectrum/Impedance analyzer with an EG & G M283 potentiostat. Non-linear least square regression analyses of simultaneously acquired conductance and susceptance data were discussed in detail, giving that Rm, Cs, 1/Cm (or Lm) and of as estimation parameters is the best choice among various fitting routines. Equivalent electrical circuit parameters of quartz crystal resonance during electrodeposition of silver and polyaniline and electrochemical processes of the deposits were obtained and discussed according to changes in electrode mass, electrode surface roughness and film conductivity etc. The significant changes of motional resistance Rm and static capacitance C, observed in the silver case was believed to result mainly from changes in electrode surface roughness and the linear relationship between them was well explained by the following equation, Cs = Cq+ Ce = εqAq/ hq + εek2Rm/[he(ωρLηL]1/2.  相似文献   

13.
New oxide films have been electrodeposited from [P2Mo18O62]6− by potential cycling in mildly acidic aqueous media. To obtain an adherent and persistent film, it is necessary that more than six electrons/molecule be fixed on the framework of the heteropolyanion. The film is then studied in pure supporting electrolyte. In this medium, a remarkable current increase is observed during the potential cycling. Whether the film is deposited on a glassy carbon electrode or on the gold electrode of an electrochemical quartz crystal microbalance (EQCM), exactly the same steady current increase up to a maximum is obtained in cyclic voltammetric measurements. The EQCM reveals a steady mass increase during the continuous cycling of the film in the supporting electrolyte. This behaviour is interpreted as featuring an irreversible water and electrolyte intake into the film, up to a maximum, after which the phenomena observed during reduction and oxidation processes are taken as featuring intercalation/deintercalation, respectively. This behaviour is much the same as described in the literature for WO3 and MoO3 bronzes, except that the present films seem very stable and have shown no tendency to dissolve or deactivate. Received: 2 December 1998 / Accepted: 26 January 1999  相似文献   

14.
基于金纳米粒子的QCM实时检测DNA错配的研究   总被引:2,自引:0,他引:2  
利用石英晶体微天平(QCM)技术,用双硫醇分子作为连接剂,将金纳米粒子固定于金电极表面,以人类p53基因片断为DNA探针,研究了其在QCM金电极表面的固定、杂交和错配,重点探讨了金纳米粒子修饰的DNA错配碱基个数和错配位点对杂交的影响。在实验条件下,金纳米粒子在QCM金电极表面的修饰使其灵敏度得到了明显提高;而且,错配碱基个数和错配碱基位点的差异都对杂交产生了不同程度的影响。  相似文献   

15.
Pejcic B  Myers M  Ranwala N  Boyd L  Baker M  Ross A 《Talanta》2011,85(3):1648-1657
This report compares the performance of polymer and carbon nanotube-polymer composite membranes on a quartz crystal microbalance (QCM) sensor for the detection of aromatic hydrocarbons (benzene, toluene, ethylbenzene, p-xylene and naphthalene) in aqueous solutions. Several different polymers (polystyrene, polystyrene-co-butadiene, polyisobutylene and polybutadiene) and types of functionalized carbon nanotubes (multi-walled and single-walled carbon nanotubes) were investigated at varying carbon nanotube (CNT) loading levels and film thicknesses. In a majority of instances, the difference in response between membranes comprising pure polymer and membranes containing 10% (w/w) carbon nanotubes were not statistically significant. However, a notable exception is the decreasing sensitivity towards p-xylene with increasing carbon nanotube content in a polybutadiene film. This variation in sensitivity can be attributed to a change in the sorption mechanism from absorption into the polymer phase to adsorption onto the carbon nanotube sidewalls. With much thicker coatings of 10% (w/w) carbon nanotube in polybutadiene, the sensitivity towards toluene was higher compared to the pure polymer. The increased toluene sensitivity may be partially attributed to an increase in the sorption capacity of a carbon nanotube polymer composite film relative to its corresponding pure polymer film. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) measurements were performed to understand the mechanism of sorption and these studies showed that the addition of functionalized CNT to the polymer increases the absorption of certain types of hydrocarbons. This study demonstrates that carbon nanotubes can be incorporated into a polymer-coated QCM sensor and that composite films may be used to modify the QCM response and selectivity during the analysis of complex hydrocarbon mixtures.  相似文献   

16.
Copper electrodeposition from acidic sulfate and perchlorate electrolytes is studied. Some measurements are performed with addition of gelatine as a surface active agent. In the course of microgravimetric studies, decrease of the derivative of the electrode mass variation by the consumed charge is found, as compared to the value corresponding to the current efficiency of 100%. The latter is in part related to the effect of the double layer structure on the rate of the consecutive stages of copper recharge (Cu2+ + e → Cu+) and deposition (Cu+ + e → Cu). This effect is most pronounced in the case of solutions containing surface active agents that cause hyperpolarization and extension of the monovalent copper stability range as a result of their adsorption on the electrode surface. The faradaic impedance spectra obtained in sulfate and perchlorate electrolytes evidence at least the difference in the rate constants of recharge and copper deposition in these electrolytes. In both cases, the recharge rate constant is considerably lower than the deposition rate constant. The difference between these constants decreases noticeably at the addition of surface active agents.  相似文献   

17.
This study attempted to determine absolute heparin concentration in phosphate buffer solution (PBS, pH 7.4) by using quartz crystal microbalance (QCM) as an affinity biosensor. Electrochemical impedance spectroscopy (EIS) was also used to investigate immobilization of protamine and heparin assay. In addition, the effectiveness of physical adsorption in immobilizing protamine was confirmed by examining the preparation conditions, including the incubation time and protamine concentration. It induced maximum decrease (ca. −100 Hz) in oscillating frequency of QCM by applying 20 mg/ml protamine and 20 min for incubation in PBS. Heparin adsorption onto protamine-modified electrode in PBS revealed an exponential-like binding curve and long duration for reaching the steady state in frequency response of QCM. Moreover, two linear calibration curves were obtained judging from the initial slope (df/dt) and the frequency change (Δf) of QCM obtained after a binding interval (600 s) for heparin concentrations from 0 to 3.0 and 7.0 U/ml, respectively. In EIS analysis, calibration curves with linear concentration range of 0-3.0 U/ml were obtained for heparin in PBS when ferrocyanide was used as an electroactive marker.  相似文献   

18.
This study reports the synthesis, characterization and gas sensing applications of N-cyclohexylmethacrylamide (NCMA) monomer material using FT-IR, 1H and 13C NMR, UV-visible spectroscopy, Quartz Crystal Microbalance (QCM) and Langmuir-Blodgett (LB) thin film deposition techniques. The thin film deposition conditions of NCMA monomer material, which are prepared by LB film technique, are characterized by UV-visible spectroscopy and QCM system. The sensing behaviors of the LB film with respect to volatile organic compounds (VOCs) at room temperature are investigated. Surface pressure change as a function of surface area of NCMA molecule at the water surface shows a well-organized and stable monolayer at 18 mN m?1 surface pressure value for LB film deposition. Transfer ratio values are found to be ≥ 0.94 for quartz glass and ≥ 0.93 for quartz crystal substrate. The typical frequency shift per layer is obtained 20.10 Hz/layer and the deposited mass onto a quartz crystal is calculated as 824.62 ng/layer. The sensing responses of the LB films against chloroform, dichloromethane, acetone, toluene, benzene and ethanol are measured by QCM system. The sensitivities of the NCMA LB film sensor are determined between 0.085 and 0.029 Hz ppm?1. Sensitivities with detection limits are between 35.29 and 100.33 ppm against organic vapors. These results can be concluded that the monomer LB film sample is found to be significantly more sensitive to chloroform and dichloromethane vapors than others organic vapors used in this work. This material may find potential applications in the development of room temperature organic vapor sensing.  相似文献   

19.
An electrochemical quartz crystal microbalance was employed to monitor directly the growth of vanadium hexacyanoferrate (VHF) films on platinum substrates during electrodeposition and interfacial coagulation in the solution containing sulfuric acid electrolyte, vanadium(IV) and hexacyanoferrate(III). Mass changes of the gold/crystal working electrode were correlated with cyclic voltammetry data. Effects of cations (NH4+, Li+, Na+ and K+), anions (SO42− and NO3) and solvent during redox reactions of the films were studied. The results show that cations were incorporated into the film during reduction and expelled from the film during oxidation. Solvent also participates in VHF electrochemistry, and its role cannot be neglected. Anions play no role in VHF electrochemistry.  相似文献   

20.
Long-term environmental monitoring of organic compounds in natural waters requires sensors that respond reproducibly and linearly over a wide concentration range, and do not degrade with time. Although polymer coated piezoelectric based sensors have been widely used to detect hydrocarbons in aqueous solution, very little information exists regarding their stability and suitability over extended periods in water. In this investigation, the influence of water aging on the response of various polymer membranes [polybutadiene (PB), polyisobutylene (PIB), polystyrene (PS), polystyrene-co-butadiene (PSB)] was studied using the quartz crystal microbalance (QCM). QCM measurements revealed a modest increase in sensitivity towards toluene for PB and PIB membranes at concentrations above 90 ppm after aging in water for 4 days. In contrast, the sensitivity of PS and PSB coated QCM sensors depended significantly on the toluene concentration and increased considerably at concentrations above 90 ppm after aging in water for 4 days. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR–FTIR) showed that there is a change in the sorption mechanism at higher toluene levels for PS and PSB. Positron annihilation lifetime spectroscopy (PALS) studies were performed to investigate the free volume properties of all polymers and to monitor any changes in the free volume size and distribution due to water and toluene exposure. The PALS did not detect any considerable variation in the free volume properties of the polymer films as a function of solution composition and soaking time, implying that viscoelastic and/or interfacial processes (i.e. surface area changes) are probably responsible for variations in the QCM sensitivity at high hydrocarbon concentrations. The results suggest that polymer membrane conditioning in water is an issue that needs to be considered when performing QCM measurements in the aqueous phase. In addition, the study shows that the hydrocarbon response is concentration dependant for polymers with a high glass transition temperature, and this feature is often neglected when comparing sensor sensitivity in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号