首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Composite ZnO/SiO2 nanoparticles were made by flame spray pyrolysis (FSP). Characteristics of the product powder and its crystallization behavior on post‐calcination were evaluated. Polyhedral aggregates of nano‐sized primary particles consisting of ZnO nano‐crystals 1–3 nm in size and amorphous SiO2 were obtained by FSP. A short residence time in the flame can result in the co‐existence of the ZnO and SiO2 clusters without substitution or reaction hindering each other's grain growth. There was almost no change in the XRD pattern by calcination at 600 °C for 2 h, suggesting a high thermal stability of the ZnO nano‐crystals in the composite particles. A pure α‐willemite phase was obtained at 900 °C. At this calcination temperature, dC and dBET of the powder were 63 and 44 nm, respectively. The nano‐composite structure of the FSP‐made particles can suppress crystalline growth of ZnO during calcination to maintain a high reactivity of ZnO with SiO2, obtaining pure α‐willemite with high specific surface area at low calcination temperatures.  相似文献   

2.
The morphological change of silver nano‐particles (AgNPs) exposed to an intense synchrotron X‐ray beam was investigated for the purpose of direct nano‐scale patterning of metal thin films. AgNPs irradiated by hard X‐rays in oxygen ambient were oxidized and migrated out of the illuminated region. The observed X‐ray induced oxidation was utilized to fabricate nano‐scale metal line patterns using sectioned WSi2/Si multilayers as masks. Lines with a width as small as 21 nm were successfully fabricated on Ag films on silicon nitride. Au/Ag nano‐lines were also fabricated using the proposed method.  相似文献   

3.
Oxide nanoparticles were used as carrier for organic semiconductor materials. Stable suspensions of ZrO2 nanoparticles coated with anthracene, pentacene, or para-hexaphenyl were obtained by microwave plasma synthesis of ZrO2 cores, subsequent in situ coating with organic compounds, and in situ dispersion in ethylene glycol. Powders of coated oxide nanoparticles were synthesized for comparison. The successful coating and a small uniform size distribution of the ZrO2 cores were confirmed by comprehensive characterization including photoluminescence, absorption spectroscopy, electron microscopy, electron energy loss spectroscopy, mass spectrometry, and X-ray diffraction. Powder compacts of anthracene-coated ZrO2 particles showed good air stability and a significant blue shift accompanied by an attenuation of the emission lines at higher vibronic orders in comparison to samples of pure anthracene as received. For para-hexaphenyl-coated nanoparticles, the same photoluminescence characteristics are observed as for pure para-hexaphenyl. In the case of pentacene-coated nanoparticles indication for degradation is found.  相似文献   

4.
We have utilized a solvothermal nano‐plating technique to grow nano‐structured CoSb3 directly onto the surface of micron‐sized CoSb3 particles that were subsequently hot pressed and densified into a homogeneous skutterudite nano‐composite. We herein present results for three samples: a bulk sample to serve as a reference, and two samples with solvothermally grown nano‐structures of 5 wt% and 20 wt%, respectively. All three samples used the same bulk starting materials. The thermal conductivity was measured via two independent techniques (steady state and laser flash) and both show a systematic reduction in the thermal conductivity with an increasing amount of nano‐structures. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
The control of spin‐dependent‐magnetoresistance by regulation of the heat treatment (HT) temperature for magnetite (Fe3O3) nano‐particle sinter (MNPS) has been studied. The average nano‐particle size in the MNPS is 30nm and the HT was carried out from 400°C to 800°C. The HT of the MNPS varies the coupling form between adjacent magnetite nano‐particles and the crystallinity of that. The measurements on electrical resistance (ER), magnetoresistance (MR) and magnetization were performed between 4K and 300K. The behavior of the ER and MR considerably changes at the HT temperature of ~600°C. Below ~600°C the ER indicates the variable‐range‐hopping conduction behavior and the MR shows the large intensity in a wide temperature region. Above ~600°C the ER shows the indication of the Verwey transition near 110K like a bulk single crystal and the MR designates the smaller intensity. We consider that below ~600°C the ER and MR are dominated by the grain‐boundary conduction and above ~600°C those are determined by the inter‐grain conduction. The magnetic field application to the grain‐boundary region is inferred to cause the large enhancement of the MR.  相似文献   

6.
In this work, we demonstrate nano‐structured silver particles photo‐reduced from silver nitride (AgNO3) solution using visible‐light‐activated titanium dioxide (TiO2), which can be a convenient and effective substrate for surface enhanced Raman spectroscopy (SERS) observation. Visible‐light‐activated carbon‐containing TiO2 nanoparticles are applied to photo‐reduce and form nano‐structured silver from AgNO3 upon visible‐light illumination. Photo‐reduced nano‐structured silver is used as an active substrate for SERS studies of TiO2 as well as nano diamond and TiO2. The photo reduction of AgNO3 and SERS observation can be obtained by simultaneously using the same visible laser excitation. The coexistence of the anatase phase with small admixture of the rutile phase in the TiO2 can be observed using SERS. The carbon structure in the carbon‐containing TiO2 was determined to be sp2 type carbon bonding by SERS. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
The size distribution within and electrokinetic properties of aqueous perovskite (LaCoO3) suspensions, have been characterized as a function of processing conditions. Submicron–sized perovskite particles have been obtained using a cavitation technique in which the suspension is passed through a series of small orifices under extreme driving pressure drops. When no additives were used, the zeta potential of the particles was found to be positive over the entire pH range studied. Use of an acrylic copolymer surfactant with multiple negatively charged sites during the cavitation processing was found to improve dispersion stability. The observed variations in zeta potential and particle size for the suspensions are explained in terms of electrostatic interactions between particles, the tendency for the surfactant to adsorb onto the particles, and the degree of steric stabilization provided by the surfactant.  相似文献   

8.
Temperature‐dependent magnetization and magnon Raman spectra were measured for anti‐ferromagnetic NiO‐nanoflowers. The results show several new magnetic behaviors, including the appearance of a ferromagnetic phase, a reduced Néel temperature (TN) and a reduced Curie temperature (TC). The temperature dependencies of the double magnon (2M) Raman wavenumber and intensity are similar to those of magnetization. A magnetic granules model (MGM) consisted of a crystalline core enclosed by a shell is proposed. The model suggests that the large quantity of spins induced by specific surface effect in the shell plays a key role in nano‐magnetism. Based on the MGM, the micro‐mechanism of the observed new magnetic behavior is understood by the magnon Raman spectra. The MGM is based on the general features of magnetic nano‐particles, and thus it should be generally applicable to common magnetic nano‐particles. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
A portable ultrahigh‐vacuum system optimized for in situ variable‐temperature X‐ray scattering and spectroscopy experiments at synchrotron radiation beamlines was constructed and brought into operation at the synchrotron radiation facility ANKA of the Karlsruhe Institute of Technology, Germany. Here the main features of the new instrument are described and its capabilities demonstrated. The surface morphology, structure and stoichiometry of EuSi2 nano‐islands are determined by in situ grazing‐incidence small‐angle X‐ray scattering and X‐ray absorption spectroscopy. A size reduction of about a factor of two of the nano‐islands due to silicide decomposition and Eu desorption is observed after sample annealing at 1270 K for 30 min.  相似文献   

10.
The development of cancer photothermal therapies, many of which rely on photothermal agents, has received significant attention in recent years. In this work, various ligands‐stabilized magnetite (Fe3O4) particles are fabricated and utilized as a photothermal agents for in vivo tumor‐imaging‐guided photothermal therapy. Fe3O4 particles stabilized by macromolecular ligands as, e.g. polyethylene glycol (PEG), exhibit a superior and more stable photothermal effect compared to Fe3O4 particles stabilized by small molecules like citrate, due to their stronger ability of antioxidation. In addition, the photothermal effect of Fe3O4 particles is revealed to increase with size, which is attributed to the redshift of Vis‐NIR spectra. Fe3O4 particles injected intravenously into mice can be accumulated in the tumor by the application of an external magnetic field, as revealed by magnetic resonance imaging. In vivo photothermal therapy test of PEG‐stabilized Fe3O4 further achieves better tumor ablation effect. Overall, this study demonstrates efficient imaging‐guided photothermal therapy of cancer that is based on Fe3O4 particles of optimized size and with optimized ligands. It is expected that the ligand‐directed and size‐dependent photothermal effect will provide more approaches in the design of novel materials.  相似文献   

11.
The formation of submicron TiO2 smoke (a gas‐phase suspension) from titanium tetrachloride in a low‐pressure hydrolysis reaction in a simple reactor configuration has been studied. Particle size distribution, particle morphology and degree of crystallinity have been characterized as a function of reaction conditions. Highly crystalline anatase TiO2 particles with narrow size distribution and smaller particle size were formed at high reactor temperature, while larger, amorphous particles were found at lower reactor temperatures. These results are consistent with literature studies. At 817 °C, small (450 nm), spherical, unagglomerated particles could be produced. A gas‐phase dispersion of these particles is intended for use as seeds in subsequent kinetic studies of titanium dioxide formation reactions involving a rapid compression methodology.  相似文献   

12.
The development of a sagittally focusing double‐multilayer monochromator is reported, which produces a spatially extended wide‐bandpass X‐ray beam from an intense synchrotron bending‐magnet source at the Advanced Photon Source, for ultrafast X‐ray radiography and tomography applications. This monochromator consists of two W/B4C multilayers with a 25 Å period coated on Si single‐crystal substrates. The second multilayer is mounted on a sagittally focusing bender, which can dynamically change the bending radius of the multilayer in order to condense and focus the beam to various points along the beamline. With this new apparatus, it becomes possible to adjust the X‐ray beam size to best match the area detector size and the object size to facilitate more efficient data collection using ultrafast X‐ray radiography and tomography.  相似文献   

13.
Novel CO2‐responsive conductive polymer particles based on poly(N‐(3‐amidino)‐aniline) (or PNAAN) are reported in this work. A CO2‐responsive N‐(3‐amidino)‐aniline (NAAN) monomer is firstly synthesized with the pendant amidine group at the meta‐position of aniline (AN) and subsequently polymerized into the PNAAN polymer by chemical oxidation. Self‐assembly of PNAAN in turn forms the polymer particles. In the strong or weak acid media, the amidine group protonates into cationic amidinium and self‐stabilizes the PNAAN particles without the use of any stabilizers. The reaction media are found to affect the polymerization rate and self‐assembly of particles, and hence the size and size distribution of the resultant particles. The particles synthesized in strong basic media show CO2‐responsvie properties since the H+ released by dissolved CO2 (dCO2) can protonate the amidine group into hydrophilic amidinium group and result in swelling of the PNAAN particles. Zeta‐potential measurements show the reversible change of particle surface charges in the presence and absence of dCO2. Dynamic light scattering (DLS) measurements show the particle size linearly changed with dCO2 concentration in the range of 5 × 10?4 and 2.5 × 10?2 atm. This is the first reported CO2‐responsive polyaniline (PANI) particles for dCO2 sensing or reversible fixation of CO2.  相似文献   

14.
There is mounting interest in designing magnetically steerable nano‐ and micromotors for next generation medical nanorobotics, which requires biocompatibility for each individual component. Although various magnetic materials (e.g., Ni, Co, and Fe3O4) have been incorporated into micromotors, their acid resistance remains largely unexplored. In this article, a simple one‐step method to prepare magnetic microrods via electrostatic attraction between paramagnetic magnetite nanoparticles (Fe3O4 NPs) and gold microrods at appropriate pH values is reported. The as‐prepared Fe3O4‐coated micromotors can be powered by MHz ultrasound and easily steered by external magnetic fields, and perform well in harsh working conditions such as high acidity, high viscosity, and high ionic strength. In particular, extended exposure to solution of pH as low as 0.9 has a minimal effect on the speed, steerability, or cargo‐transporting capability of micromotors coated with Fe3O4 NPs, in stark contrast with those containing Ni segments. Considering the many challenges of biomedical applications, acid‐resistant, magnetically steerable Fe3O4‐coated micromotors powered by MHz ultrasound can be a promising prototype for the future development of medical nano‐ and microrobotics.  相似文献   

15.
In this article, we report on a new one‐step synthetic route to obtain multi‐functional silica‐coated hematite particles using a water‐based surfactant‐free technology. The synthesis and properties of uniform silica‐coated hematite particles with adjustable size, morphology, and silica shell thickness are discussed in detail. The developed method allows simultaneous formation of the silica shell around hematite core and incorporation of reactive groups on the surface of core–shell nanoparticles. Vinyl groups are introduced to the silica surface at once by pre‐functionalization of a water‐soluble hyperbranched polyalkoxysiloxanes with active double bonds. The reactivity of these surface‐immobilized vinyl groups is demonstrated by covalent attachment of rhodamine B using a thiol‐en click reaction.  相似文献   

16.
Currently available methods to prepare conducting polymers‐coated colloidal substrates for biomedical applications need to be improved because they involve the use of toxic reagents and tend to result in aggregated products with diminished conductivity. The work herein describes for the first time a facile strategy for preparing highly water‐dispersible, highly conductive, and biocompatible polypyrrole‐coated silica core–shell (SiO2@PPy) particles using only chondroitin sulfate (CS), a biologically derived polymer, as the stabilizer and dopant. The CS preadsorbed onto silica surface serves as a template to control the confined growth of the PPy shell and doping of in situ polymerized PPy shell. The thickness of the PPy shell can be tuned from 8 to 17 nm by varying the CS preadsorbed amount. Increasing the thickness of the adsorbed CS layer can control the deposition of thinner PPy shells on an SiO2 core surface to provide highly water‐dispersible SiO2@PPy particles. Moreover, CS‐doped SiO2@PPy particles exhibit conductivities as high as 5.3 S cm?1. The conductivity of the particles depends on the PPy mass loading and the doping level of the PPy shell. Furthermore, the SiO2@PPy particles exhibit good biocompatibility and therefore have potential applications in biomedicine.  相似文献   

17.
The authors describe an organic complementary inverter with N,N′‐ditridecyl‐3,4,9,10‐perylenetetracarboxylic diimide as an n‐type semiconductor and pentacene as a p‐type semiconductor. Each transistor of the inverter exhibited high carrier mobility: 1.62 cm2/Vs for an n‐type drive transistor and 0.57 cm2/Vs for a p‐type switch transistor. The gain of the inverter reached 125. Another inverter using Ta2O5 as a high κ gate dielectric performed well with a gain of 500 and an operation voltage of only 5 V.

  相似文献   


18.
《Ultrasonics sonochemistry》2014,21(6):2032-2036
Aqueous suspensions containing silica or polystyrene latex were ultrasonically atomized for separating particles of a specific size. With the help of a fog involving fine liquid droplets with a narrow size distribution, submicron particles in a limited size-range were successfully separated from suspensions. Performance of the separation was characterized by analyzing the size and the concentration of collected particles with a high resolution method. Irradiation of 2.4 MHz ultrasound to sample suspensions allowed the separation of particles of specific size from 90 to 320 nm without regarding the type of material. Addition of a small amount of nonionic surfactant, PONPE20 to SiO2 suspensions enhanced the collection of finer particles, and achieved a remarkable increase in the number of collected particles. Degassing of the sample suspension resulted in eliminating the separation performance. Dissolved air in suspensions plays an important role in this separation.  相似文献   

19.
The Hubbard model is a prototype for strongly correlated electrons in condensed matter, for molecules and fermions or bosons in optical lattices. While the equilibrium properties of these systems have been studied in detail, the excitation and relaxation dynamics following a perturbation of the system are only poorly explored. Here, we present results for the dynamics of electrons following nonlinear strong excitation that are based on a nonequilibrium Green functions approach. We focus on small systems—“Hubbard nano‐clusters”—that contain just a few particles where, in addition to the correlation effects, finite size effects and spatial inhomegeneity can be studied systematically. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Optical and optoelectronic techniques for micro‐ and nano‐object manipulation are becoming essential tools in nano‐ and biotechnology. Among optoelectronic manipulation platforms, photovoltaic optoelectronic tweezers (PVOTs) are an emergent technique that are particularly successful at producing permanent nanoparticle microstructures. New strategies to enhance the capabilities of PVOT, based on real‐time operation, are investigated. This optoelectronic platform uses z‐cut LiNbO3:Fe substrates under excitation by a Gaussian light beam. Unexpected results show that during illumination, metallic particles previously deposited on the substrate are ejected from the light spot region. This behavior differs from the trapping phenomenon observed in previous work on PVOT operation, using a sequential method in which illumination is prior to particle manipulation. To discuss the results, a novel mechanism of charge exchange between particles and the ferroelectric substrate is proposed. Applications of this repulsion behavior are investigated. On the one hand, either particle repulsion or trapping in the illuminated region can be obtained by simply light switching on/off. On the other hand, by moving the light spot, different kinds of arbitrarily shaped tracks along the light path, either empty or filled with particles, are obtained. The results demonstrate new key capabilities of PVOT, such as pattern drawing, erasure, and reconfiguration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号