首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper is concerned with an initial boundary value problem for strictly convex conservation laws whose weak entropy solution is in the piecewise smooth solution class consisting of finitely many discontinuities. By the structure of the weak entropy solution of the corresponding initial value problem and the boundary entropy condition developed by Bardos-Leroux Nedelec, we give a construction method to the weak entropy solution of the initial boundary value problem. Compared with the initial value problem, the weak entropy solution of the initial boundary value problem includes the following new interaction type: an expansion wave collides with the boundary and the boundary reflects a new shock wave which is tangent to the boundary. According to the structure and some global estimates of the weak entropy solution, we derive the global L^1-error estimate for viscous methods to this initial boundary value problem by using the matching travelling wave solutions method. If the inviscid solution includes the interaction that an expansion wave collides with the boundary and the boundary reflects a new shock wave which is tangent to the boundary, or the inviscid solution includes some shock wave which is tangent to the boundary, then the error of the viscosity solution to the inviscid solution is bounded by O(ε^1/2) in L^1-norm; otherwise, as in the initial value problem, the L^1-error bound is O(ε| In ε|).  相似文献   

2.
This paper is concerned with the inflow problem for the one-dimensional compressible Navier–Stokes equations. For such a problem, Matsumura and Nishihara showed in [10] that there exists boundary layer solution to the inflow problem, and that both the boundary layer solution, the rarefaction wave, and the superposition of boundary layer solution and rarefaction wave are nonlinear stable under small initial perturbation. The main purpose of this paper is to show that similar stability results for the boundary layer solution and the supersonic rarefaction wave still hold for a class of large initial perturbation which can allow the initial density to have large oscillation. The proofs are given by an elementary energy method and the key point is to deduce the desired lower and upper bounds on the density function.  相似文献   

3.
In this paper, we propose a simple and robust numerical method for the forced Korteweg–de Vries (fKdV) equation which models free surface waves of an incompressible and inviscid fluid flow over a bump. The fKdV equation is defined in an infinite domain. However, to solve the equation numerically we must truncate the infinite domain to a bounded domain by introducing an artificial boundary and imposing boundary conditions there. Due to unsuitable artificial boundary conditions, most wave propagation problems have numerical difficulties (e.g., the truncated computational domain must be large enough or the numerical simulation must be terminated before the wave approaches the artificial boundary for the quality of the numerical solution). To solve this boundary problem, we develop an absorbing non-reflecting boundary treatment which uses outward wave velocity. The basic idea of the proposing algorithm is that we first calculate an outward wave velocity from the solutions at the previous and present time steps and then we obtain a solution at the next time step on the artificial boundary by moving the solution at the present time step with the velocity. And then we update solutions at the next time step inside the domain using the calculated solution on the artificial boundary. Numerical experiments with various initial conditions for the KdV and fKdV equations are presented to illustrate the accuracy and efficiency of our method.  相似文献   

4.
We propose an approximate analytical solution of the boundary value problem (BVP) for the nonlinear shallow waters equations. Our work, based on the Carrier and Greenspan [ 1 ] hodograph transformation, focuses on the propagation of nonlinear nonbreaking waves over a uniformly plane beach. Available results are briefly discussed with specific emphasis on the comparison between the Initial Value Problem and the BVP; the latter more completely representing the physical phenomenon of wave propagation on a beach. The solution of the BVP is achieved through a perturbation approach solely using the assumption of small waves incoming at the seaward boundary of the domain. The most significant results, i.e., the shoreline position estimation, the actual wave height and velocity at the seaward boundary, the reflected wave height and velocity at the seaward boundary are given for three specific input waves and compared with available solutions.  相似文献   

5.
We study the properties of wave operators satisfying the periodicity condition with respect to time and homogeneous boundary conditions of the third kind and of Dirichlet type. We prove the existence of a nontrivial periodic (in time) sine-Gordon solution with homogeneous boundary conditions of the third kind and of Dirichlet type. We obtain theorems on the existence of periodic solutions of a quasilinear wave equation with variable (in x) coefficients and a boundary condition of the third kind.  相似文献   

6.
The subinertial internal Kelvin wave solutions of a linearized system of the ocean dynamics equations for a semi-infinite two-layer f-plane model basin of constant depth bordering a straight, vertical coast are imposed. A rigid lid surface condition and no-slip wall boundary condition are imposed. Some trapped wave equations are presented and approximate solutions using an asymptotic method are constructed. In the absence of bottom friction, the solution consists of a frictionally modified Kelvin wave and a vertical viscous boundary layer. With a no-slip bottom boundary condition, the solution consists of a modified Kelvin wave, two vertical viscous boundary layers, and a large cross-section scale component. The numerical solutions for Kelvin waves are obtained for model parameters that take account of a joint effect of lateral viscosity, bottom friction, and friction between the layers.  相似文献   

7.
In this paper, we are concerned with the Vlasov–Poisson–Boltzmann (VPB) system in three-dimensional spatial space without angular cutoff in a rectangular duct with or without physical boundary conditions. Near a local Maxwellian with macroscopic quantities given by rarefaction wave solution of one-dimensional compressible Euler equations, we establish the time-asymptotic stability of planar rarefaction wave solutions for the Cauchy problem to VPB system with periodic or specular-reflection boundary condition. In particular, we successfully introduce physical boundaries, namely, specular-reflection boundary, to the models describing wave patterns of kinetic equations. Moreover, we treat the non-cutoff collision kernel instead of the cutoff one. As a simplified model, we also consider the stability and large time behavior of the rarefaction wave solution for the Boltzmann equation.  相似文献   

8.
Marco Zank  Olaf Steinbach 《PAMM》2016,16(1):777-778
For the solution of the wave equation a space-time energetic boundary integral formulation is used. The resulting single layer boundary integral equation is discretised by a conforming ansatz space on the lateral boundary. To derive an adaptive scheme an a posteriori error estimator based on the representation formula is used. Finally, numerical examples for a one-dimensional spatial domain are presented. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Based on the theory of semi-global C 2 solution for 1-D quasilinear wave equations, the local exact boundary controllability of nodal profile for 1-D quasilinear wave equations is obtained by a constructive method, and the corresponding global exact boundary controllability of nodal profile is also obtained under certain additional hypotheses.  相似文献   

10.
The behavior of the formal solution, obtained by the Fourier method, to a mixed problem for the wave equation with arbitrary two-point boundary conditions and the initial condition φ(х) (for zero initial velocity) with weaker requirements than those for the classical solution is analyzed. An approach based on the Cauchy–Poincare technique, consisting in the contour integration of the resolvent of the operator generated by the corresponding spectral problem, is used. Conditions giving the solution to the mixed problem when the wave equation is satisfied only almost everywhere are found. When φ(x) is an arbitrary function from L2[0, 1], the formal solution converges almost everywhere and is a generalized solution to the mixed problem.  相似文献   

11.
In this paper, we prove some well-posedness theorems for the nonlinear massive wave equation (with the mass satisfying the Breitenlohner-Freedman bound) on asymptotically anti-de Sitter spaces. The solution is constructed by contraction mapping method and also as a limit of solutions to an initial boundary value problem with boundary at a finite location in spacetime by finally pushing the boundary out to infinity. The solution obtained is unique within the energy class.  相似文献   

12.
In this paper, we investigate the large-time behavior of solutions to an outflow problem for compressible Navier-Stokes equations. In 2003, Kawashima, Nishibata and Zhu [S. Kawashima, S. Nishibata, P. Zhu, Asymptotic stability of the stationary solution to the compressible Navier-Stokes equations in the half space, Comm. Math. Phys. 240 (2003) 483-500] showed there exists a boundary layer (i.e., stationary solution) to the outflow problem and the boundary layer is nonlinearly stable under small initial perturbation. In the present paper, we show that not only the boundary layer above but also the superposition of a boundary layer and a rarefaction wave are stable under large initial perturbation. The proofs are given by an elementary energy method.  相似文献   

13.
In this paper, we study the Riemann problem of the two-dimensional (2D) pseudo-steady supersonic flow with Van der Waals gas around a sharp corner expanding into vacuum. The essence of this problem is the interaction of the centered simple wave with the planar rarefaction wave, which can be solved by a Goursat problem or a mixed characteristic boundary value and slip boundary value problem for the 2D self-similar Euler equations. We establish the hyperbolicity and a priori C1 estimates of the solution through the methods of characteristic decompositions and invariant regions. Moreover, we construct the pentagon invariant region in order to obtain the global solution. In addition, based on the generality of the Van der Waals gas, we construct the subinvariant regions and get the hyperbolicity of the solution according to the continuity of the subinvariant region. At last, the global existence of solution to the gas expansion problem is obtained constructively.  相似文献   

14.
In this paper, we consider the problem of diffraction of an acoustic wave by a cone of arbitrary shape. The problem is to calculate in a high frequency approximation the wave scattered by the cone vertex. The calculation is based on a formula of Smyshlyaev. The acoustic wave satisfies the Newmann boundary conditions. The same problem for the Dirichlet boundary conditions was considered by Babich, Dement'ev, and Samokish. In this paper, we apply a similar method. We calculate the direction diagram for the wave scattered by the cone vertex, in the so-called Smyshlyaev oasis. Calculations show that for the case when the exact solution can be written explicitly (axisymmetric wave on a circular cone), the approximate solution is very close to the exact one. Bibliography: 8 titles. Dedicated to N. N. Uraltseva on her jubilee Published inZapiski Nauchnykh Seminarov POMI, Vol. 221, 1995, pp. 75–82. Translated by D. B. Dement'ev.  相似文献   

15.
By equivalently replacing the dynamical boundary condition by a kind of nonlocal boundary conditions, and noting a hidden regularity of solution on the boundary with a dynamical boundary condition, a constructive method with modular structure is used to get the local exact boundary controllability for 1‐D quasilinear wave equations with dynamical boundary conditions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
The Initial Boundary Value Problem for Symmetric Long Wave Equations with Nonhomogeneous Boundary ValueMiaoChcnxia(苗晨霞)(Insti...  相似文献   

17.
We prove unique existence of solution for the impedance (or third) boundary value problem for the Helmholtz equation in a half-plane with arbitrary L boundary data. This problem is of interest as a model of outdoor sound propagation over inhomogeneous flat terrain and as a model of rough surface scattering. To formulate the problem and prove uniqueness of solution we introduce a novel radiation condition, a generalization of that used in plane wave scattering by one-dimensional diffraction gratings. To prove existence of solution and a limiting absorption principle we first reformulate the problem as an equivalent second kind boundary integral equation to which we apply a form of Fredholm alternative, utilizing recent results on the solvability of integral equations on the real line in [5]. © 1997 B. G. Teubner Stuttgart–John Wiley & Sons Ltd.  相似文献   

18.
For the quasilinear hyperbolie-parabolio coupled system, the nonlinear initial- boundary value problem and the shook wave free boundary problem are considered. By linear iteration, the existence and uniqueness of the local H^m (m\geq [N+1/2]+4) solution are obtained under the assumption that for the fixed boundary problem, the boundary conditions are uniformly Lopatinski well-posed with respect to the hyperbolic and parabolic part, and for the free boundary problem, there exists a linear stable shock front structure. In particular, the local existence of the isothermal shock wave solution for radiative hydrodynamic eqations is proved.  相似文献   

19.
This paper constructs a local classical solution of degenerate hyperbolic problem for the two-dimensional nonlinear wave system. To deal with the parabolic degeneracy, we introduce a new set of coordinates to transform the nonlinear wave system to a new system that has explicitly singularity-regularity structures. By constructing a weighted metric space, we establish the existence of solution for the new system. Returning the solution to the original variables, we obtain the existence of the classical solution for the nonlinear wave system with degenerate boundary value problem.  相似文献   

20.
This paper analyzes a fluid—solid interaction model which describes the interaction between an inviscid fluid and an elastic solid In the model, the linear elastodynamic equations complemented with appropriate interface and boundary conditions are used to describe the wave propagation in the fluid and solid regions, and absorbing boundary conditions are used to minimize unphysical wave reflections. It is shown that the initial boundary value problem of the mathematical model posses a unique global (in time) quasi-strong solution. Regularity of the quasi-strong solution is also obtained under some reasonable assumptions on the data and on the domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号