首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chiral coordination polymers have attracted intense interest mainly due to their potential applications. Hence, two new chiral copper(II) coordination polymers {[Cu(tsgluO)(H2O)]2·3H2O}n ( 1 ) and [Cu(tsgluO)(2,2′‐bipy)]n ( 2 ) (H2tsglu?(+)‐N‐tosyl‐l‐glutamic acid; 2,2′‐bipy?2,2′‐bipyridine) were synthesized in the absence or presence of 2,2′‐bipy ligand and structurally characterized. A single crystal X‐ray diffraction study revealed that compound 1 consists of a paddle‐wheel dicopper(II) core, which links other equivalents via four tsgluO2? ligands to form a 1D double chain. Such a chain is further interconnected through weak π‐π stacking and hydrogen bonding interactions to form a 3D H‐bonded supramolecular structure with 1D channels hosting lattice water molecules. Whereas, compound 2 , containing the coordinating 2,2′‐bipy, gives rise to a ladder‐like 1D double chain. Antiferromagnetic interactions were observed in 1 and 2 .  相似文献   

2.
Heteroleptic Ru(II) complexes were designed based on 4,4′‐bis((E)‐styryl)‐2,2′‐bipyridine (bsbpy) as an ancillary ligand for dye‐sensitized solar cells (DSSCs), and those Ru(II) sensitizers, [Ru(L)(bsbpy)(NCS)2][TBA] (TBA; tetrabutylammonium), were synthesized according to a typical one‐pot reaction of [RuCl2(p‐cymene)]2 with the corresponding anchoring ligands (where L = 4,4′‐dicarboxy‐2,2′‐bipyridine (dcbpy), 4,4′‐bis((E)‐carboxyvinyl)‐2,2′‐bipyridine (dcvbpy), 4,7‐dicarboxy‐1,10‐phenanthroline (dcphen), or 4,7‐bis((E)‐carboxyvinyl)‐1,10‐phenanthroline (dcvphen)). The new Ru(II) dyes, [Ru(L)(bsbpy)(NCS)2][TBA] that incorporated vinyl spacer(s) into ancillary and/or anchoring ligand displayed red‐shifted bands over the overall UV/VIS region relative to the absorption spectra of N719 . A combination of bsbpy ancillary and dcphen anchoring ligand showed the best result for the overall power conversion efficiency (η); i.e., a DSSC fabricated with [Ru(dcphen)(bsbpy)(NCS)2][TBA] exhibited a power conversion efficiency (η) of 2.98% (compare to N719 , 4.82%).  相似文献   

3.
Two new CdII complexes, [Cd( ces )(phen)] ( 1 ) and {[Cd( ces )(bpy)(H2O)](H2O)}2 ( 2 ), were prepared by slow solvent evaporation methods from mixtures of cis‐epoxysuccinic acid and Cd(ClO4)2 · 6H2O in the presence of phen or bpy co‐ligand ( ces = cis‐epoxysuccinate, phen = 1,10‐phenanthroline, and bpy = 2,2′‐bipyridine). Single‐crystal X‐ray diffraction analyses show that complex 1 has a one‐dimensional (1D) helical chain that is further assembled into a two‐dimensional (2D) sheet, and then an overall three‐dimensional (3D) network by the interchain C–H ··· O hydrogen bonds. Complex 2 features a dinuclear structure, which is further interlinked into a 3D supramolecular network by the co‐effects of intermolecular C–H ··· O and C–H ··· π hydrogen bonds as well as π ··· π stacking interactions. The structural differences between 1 and 2 are attributable to the intervention of different 2,2′‐bipyridyl‐like co‐ligands. Moreover, 1 and 2 exhibit intense solid‐state luminescence at room temperature, which mainly originates from the intraligand π→π* transitions of aromatic co‐ligands.  相似文献   

4.
Two new CoII coordination polymers [Co4(tbip)4(bipy)4(H2O)4] ( 1 ) and [Co(tbip)(phen)(H2O)] · H2O ( 2 ) (H2tbip = 5‐tert‐butyl isophthalic acid, bipy = 2,2′‐bipyridine, phen = 1,10‐phenanthroline) have been synthesized under hydrothermal conditions and characterized by elemental analysis, IR spectroscopy, and single‐crystal X‐ray diffraction. Compound 1 is a tbip‐bridged tetranuclear cobalt(II) complex, which is further linked by hydrogen bonds to form a supramolecular network. Compound 2 shows a tbip‐bridged linear chain structure, which is extended by hydrogen bonds to generate a double chain. Magnetic measurements show that there are weak ferromagnetic interactions between the adjacent CoII ions in 1 .  相似文献   

5.
Two new coordination polymers, {[Cd2(btc)(2,2′‐bpy)2] · H2O}n ( 1 ) and [Zn2(btc)(2,2′‐bpy)(H2O)]n ( 2 ) (H4btc = biphenyl‐2,2′,4,4′‐tetracarboxylic acid, 2,2′‐bpy = 2,2′‐bipyridine), were synthesized hydrothermally under similar conditions and characterized by elemental analysis, IR spectra, TGA, and single‐crystal X‐ray diffraction analysis. In complexes 1 and 2 , the (btc)4– ligand acts as connectors to link metal ions to give a 2D bilayer network of 1 and a 3D metal‐organic framework of 2 , respectively. The differences in the structures are induced by diverging coordination modes of the (btc)4– ligand, which can be attributed to the difference metal ions in sizes. The results indicate that metal ions have significant effects on the formation and structures of the final complexes. Additionally, the fluorescent properties of the two complexes were also studied in the solid state at room temperature.  相似文献   

6.
Four new transition metal coordination polymers, [Co(bpndc)(phen)(H2O)]n ( 1 ), [Co3(bpndc)3(2,2′‐bpy)2]n·0.5n(i‐C3H7OH) ( 2 ), and [M(bpndc)(2,2′‐bpy)2]n (M = Zn, 3 ; Cu, 4 ; H2bpndc = benzophenone ‐4,4′‐dicarboxylic acid; phen = 1,10‐phenanthroline; 2,2′‐bpy = 2,2′‐bipyridine) have been synthesized by the hydrothermal reactions and characterized by single crystal X‐ray diffraction, elemental analysis, and IR spectrum. Because of the introduction of different terminal auxiliary ligands, bpndc ligands in complexes 1 and 2 adopt different coordination modes. In complex 1 , bpndc ligands act as tridentate ligand and bridge CoII ions into 1D double‐stranded chains; while complex 2 possesses 2D (4,4) grids, where bpndc ligands adopt tetradente and pentadentate modes. Two such grids interpenetrate to form a novel catenane‐like layer. Complexes 3 and 4 are isostructural. Bpndc ligands adopt tetradentate mode and bridge metal ions forming 1D helical chains.  相似文献   

7.
A novel 1D copper(II) helical chain is constructed through the connection of tetranuclear copper(II) units [Cu4(L)(Py)4] (H8L=N,N′‐(BINOL‐3,3′‐dicarboxyl)‐disalicylhydrazide, where BINOL is 1,1′‐binaphthalenyl‐2,2′‐diol, py=pyridine) by weak coordination‐driven self‐assembly, and characterized by IR, single crystal X‐ray diffraction, thermogravimetric analysis, and X‐ray power diffraction analysis. Interestingly, the helical chains are packed in an alternating left‐(M) and right‐handed (P) chirality, the orientation of the helices was determined by the axial chirality of the ligand. The complex shows antiferromagnetic interactions between the copper centers.  相似文献   

8.
Reaction of the ligand 2, 2′‐diamino‐4, 4′‐bithiazole (DABTZ) with Zn(ClO4)2, CdCl2, and Hg(SCN)2 gives complexes with composition [Zn(DABTZ)2](ClO4)2, [Cd(DABTZ)2Cl2], and [Hg(DABTZ)(SCN)2]. The complexes were characterized by elemental analyses and infrared spectroscopy. The crystal structure of the [Hg(DABTZ)(SCN)2] was determined by X‐ray crystallography. The complex is built up of a monomeric Hg(SCN)2 unit with one 2, 2′‐diamino‐4, 4′‐bithiazole ligand coordinated to the Hg atom via the two N atoms giving rise to a five‐member chelate ring in a distorted tetrahedral environment. There is π‐π stacking interaction between the parallel aromatic rings belonging to adjacent chain as planar species in which the mean molecular planes are close to parallel and separated by a distance of ~ 3.5Å, close to that of the planes in graphite. The coordinated 2, 2′‐diamino‐4, 4′‐bithiazole molecule is involved in hydrogen bonding acting as hydrogen‐bond donors with N atoms from the SCN ligand as potential hydrogen‐bond acceptors. The hydrogen bonding yields infinite chains parallel to the crystallographic vectors a and b. Each molecule is bonded to three neighbours. Both amine H atoms are hydrogen bonded to N atoms.  相似文献   

9.
The reaction of 4,4′‐bis(1,2,4‐triazol‐1‐ylmethyl)biphenyl (btmb) with silver(I) salts of BF4, NO3 and N3 led to the formation of four new silver(I) coordination polymers {[Ag(btmb)]BF4}n ( 1 ), {[Ag2(btmb)3](NO3)2(H2O)5}n ( 2 ), [Ag2(btmb)(N3)2]n ( 3 ), and [Ag(btmb)(N3)]n ( 4 ). Their coordination number varies from 2 (in 1 ) to 3 (in 2 ), 4 (in 3 ), and 5 (in 4 ). Different from the single chain structure of 1 , complex 2 displays a 1D ladder‐like double chain framework, whereas complex 3 exhibits a 2D layered architecture. Complex 4 has the same anion as complex 3 but shows a different metal‐to‐ligand ratio and a 1D double‐zigzag chain structure. Both 3 and 4 have Ag ··· Ag argentophilic interactions. The ligand btmb adopts both cis or trans configuration in the studied complexes. A trans‐ or cis‐btmb ligand link silver ions with Ag ··· Ag distances of ≈?18 and 13 Å, respectively. BF4 and NO3 are non‐coordinating anions in 1 and 2 . N3 is the bridging anion in 3 (1,3‐bridging fashion) and 4 (1,1‐bridging fashion). These findings suggest that the coordination numbers around the AgI ion correlate to the coordination abilities of anions and the btmb to silver ratio. In addition, the influence of anions on thermal stability were also investigated. This work is a good example that nicely supports the less explored field of anion‐dependent structures of complexes with non‐pyridyl ligands.  相似文献   

10.
In the title complex, [Cu2(C10H2O8)(C10H8N2)2]n, the CuII cation has a four‐coordinated environment, completed by two carboxyl O atoms belonging to two 1,2,4,5‐benzene­tetra­carboxyl­ate anions (TCB4−) and two N atoms from one 2,2′‐bi­pyridine (2,2′‐bipy) ligand, forming a distorted square‐planar geometry. The [Cu(2,2′‐bipy)]2+ moieties are bridged by TCB4− anions, which lie about inversion centres, forming an infinite one‐dimensional coordination polymer with a double‐chain structure along the a axis. A two‐dimensional network structure is formed via a face‐to‐face π–π interaction between the 2,2′‐bipy rings belonging to two adjacent double chains, at a distance of approximately 3.56 Å.  相似文献   

11.
The polynuclear copper(II) complex [Cu2(Hdpa)2(μ‐ClDHBQ)(ClO4)2]n, 1 is bridged by ClDHBQ?2 (2,5‐dichloro‐3,6‐dihydroxy‐1,4‐benzoquinone dianionic) and 2,2′‐dipyridylamine (Hdpa). In the axial position, Cu is connected with the oxygen atom of ClO. The perchlorate anion may be envisaged as a monodentate O‐bound ligand. Through the bond bridge of O–Cu … O–Cl, the binuclear compound [Cu2(Hdpa)2(μ‐ClDHBQ)(ClO4)2] is strung together into a long chain compound. Tetrachlorocatechol underwent partial oxidation/hydrolysis/dechlorination processes to produce ClDHBQ?2. The other mononuclear complex [Cu(Hdpa)(TeCQ)](DMF), 2 , in which tetrachloroquinone (TeCQ) was produced by oxidation of tetrachlorocatechol (TeCC), therefore complex 2 is in the quinone form. The magnetic susceptibility measurements show antiferromagnetic coupling with J = ?11.9 cm?1, θ = 2.6 K, and g = 2.05 for complex 1. Complex 2 exhibits the typical paramagnetic behavior of s = 1/2.  相似文献   

12.
The two isoelectronic bipyridyl derivatives [2,2′‐bipyridyl]‐3,3′‐diamine and [2,2′‐bipyridyl]‐3,3′‐diol are experimentally known to undergo very different excited‐state double‐proton‐transfer processes, which result in fluorescence quantum yields that differ by four orders of magnitude. In a previous study, these differences were explained from a theoretical point of view, because of topographical features in the potential energy surface and the presence of conical intersections (CIs). Here, we analyze the photochemical properties of a new molecule, [2,2′‐bipyridyl]‐3‐amine‐3′‐ol [BP(OH)(NH2)], which is, in fact, a hybrid of the former two. Our density functional theory (DFT), time‐dependent DFT (TDDFT), and complete active space self‐consistent field (CASSCF) calculations indicate that the double‐proton‐transfer process in the ground and first singlet π→π* excited state in BP(OH)(NH2) presents features that are between those of their “parents”. The presence of two CIs and the role they may play in the actual photochemistry of BP(OH)(NH2) and other bipyridyl derivatives are also discussed.  相似文献   

13.
A novel coordination polymer, [Ag4ppdc)(H2bpdc)(Hbpdc)2] (bpdc = 2,2′‐bipyridyl‐3,3′‐dicarboxylate), was hydrothermally synthesized at 403 K and structurally characterized by single crystal X‐ray diffraction analysis. The compound crystalizes in the monoclinic space group C2/c with a=1.9516(4) nm, b=1.9503(4) nm. c=1.2566(3) nm, and β=112.48(3)°. In the two‐dimensional crystal structure, AgI center is coordinated, in a scarce coordination environment, double‐capped tetrahedron, by one bpdc ligand to form N‐Ag‐N chelate bond via two pyridyl N atoms, and other two bpdc ligands to form two O‐Ag‐O chelate bonds, respectively, via two carboxyl O atoms. The bpdc ligands are present in one non‐protonated form, bpdc, and two protonated forms, Hbpdc and H2bpdc, which all act as μ3‐ligand in a hexadentate fashion (N, N′; O, O′; O, O′) to coordinate with three Ag centers, respectively, through the three chelate bonds. This coordinated fashion of bpdc ligand is first found in the title compound. W‐Us‐NIR reflectance spectroscopy study revealed insulator nature for the crystal with an optical energy gap of 3.1 eV.  相似文献   

14.
The photophysical and photochemical properties of (OC‐6‐33)‐(2,2′‐bipyridine‐κN1,κN1′)tricarbonyl(9,10‐dihydro‐9,10‐dioxoanthracene‐2‐carboxylato‐κO)rhenium (fac‐[ReI(aq‐2‐CO2)(2,2′‐bipy)(CO)3]) were investigated and compared to those of the free ligand 9,10‐dihydro‐9,10‐dioxoanthracene‐2‐carboxylate (=anthraquinone‐2‐carboxylate) and other carboxylato complexes containing the (2,2′‐bipyridine)tricarbonylrhenium ([Re(2,2′‐bipy)(CO)3]) moiety. Flash and steady‐state irradiations of the anthraquinone‐derived ligand (λexc 337 or 351 nm) and of its complex reveal that the photophysics of the latter is dominated by processes initiated in the Re‐to‐(2,2′‐bipyridine) charge‐transfer excited state and 2,2′‐bipyridine‐ and (anthraquinone‐2‐carboxylato)‐centered intraligand excited states. In the reductive quenching by N,N‐diethylethanamine (TEA) or 2,2′,2″‐nitrilotris[ethanol] TEOA, the reactive states are the 2,2′‐bipyridine‐centered and/or the charge‐transfer excited states. The species with a reduced anthraquinone moiety is formed by the following intramolecular electron transfer, after the redox quenching of the excited state: [ReI(aq−2−CO2)(2,2′‐bipy.)(CO)3]⇌[ReI(aq−2−CO2.)(2,2′‐bipy)(CO)3] The photophysics, particularly the absence of a ReI‐to‐anthraquinone charge‐transfer excited state photochemistry, is discussed in terms of the electrochemical and photochemical results.  相似文献   

15.
A new 3D MnII metal‐organic framework compound {Mn(phen)(dcbp)}n (H2dcbp = 4,4‐dicarboxy‐2,2′‐bipyridine, phen = 1,10‐phenanthroline) was isolated under hydrothermal conditions and structurally characterized. In the compound, the dcbp ligand is deprotonated to give a neutral species (metal:ligand with 1:1 stoichiometry). Along the c axis, the neighboring MnII ions are linked by two carboxylate bridges in µ2‐coordinating mode to generate a 1D zigzag chain, and these chains are interlinked by dicarboxylate groups of long dcbp ligands to generate a 3D (4,4)‐connected structure with the (42.84) net topology. IR and UV/Vis spectroscopy and variable temperature magnetic susceptibility measurements were made, which indicated weak antiferromagnetic interactions between the MnII ions of the compound.  相似文献   

16.
In this paper we report on the potential dependent electrocrystallization of [Ag(4,4′‐dimethyl‐2,2′‐bipyridine)2(NO3)2] ( 1 ) and Ag(4,4′‐dimethyl‐2,2′‐bipyridine)(NO3)2 ( 2 ) from the same electrolytic bath. Thus it has been shown for the first time that the coordination number of silver ion to ligands can be tuned by the electrocrystallization potential. The single crystal structure analysis [ 1 : C2/c, a = 18.6308(15), b = 14.5708(12), c = 11.5867(10) Å, β = 126.5910(10)°, Z = 4, R = 3.9 %] [ 2 : P21/c, a = 8.5865(11) b = 11.0157(14) c = 16.4554(10) Å, β = 111.102(10), Z = 4 , R = 3.5 %] show divalent silver to be in an approximately square planar surrounding. Both complexes are paramagnetic following Curie's law with magnetic moments of 1.86 μB and 1.72 μB respectively.  相似文献   

17.
The asymmetric unit of the title compound, {[Ni(C12H6N2O4)(H2O)3]·H2O}n, is composed of a lattice water mol­ecule and a nickel(II) ion that is coordinated by three water mol­ecules and the two N atoms of a 2,2′‐bi­pyridine‐3,3′‐di­carboxyl­ate ligand. The twist of the 2,2′‐bi­pyridine‐3,3′‐di­carboxyl­ate unit and the coordination of one carboxyl­ate group to a symmetry‐related NiII atom generate a helical chain that runs along the b axis. Intrahelical hydrogen bonds participate in controlling the orientation of the helices, and both right‐handed and left‐handed helices are connected by interhelical hydrogen bonds into two‐dimensional sheets.  相似文献   

18.
Linear and nonlinear optical properties of two new nickel(diimine)(dithiolate) complexes, nickel(4,4′‐dinitro2,2′‐bipyridyl)(tfd), Ni(NO2bipy)(tfd) , (tfd = 1,2‐trifluoromethylethene‐1,2‐dithiolate) and nickel(4,7‐diphenyl‐1,10‐phenathroline)(tfd), Ni(dpphen)(tfd) are reported. Ni(NO2bipy)(tfd) has a potent electronic acceptor substituted on the diimine ligand and exhibits an enhanced molecular first hyperpolarizability (β0 = ?31 × 10?30 esu), which is more than three times greater than that (β0 = ?10 × 10?30 esu) of Ni(dpphen)(tfd). Ni(NO2bipy)(tfd) also possesses the longest absorption wavelength, the largest solvatochromic shift, and one of the largest dipole moment changes (‐16 debye from ground to excited state) among nickel(diimine)(dithiolate) complexes. Crystal X‐ray structure of Ni(NO2bipy)(tfd) is used to compared the π‐bonding structure of central (N=C‐C=N)Ni(S‐C=C‐S) unit with that of previously known nickel(4,4′‐bis(butyloxycarbonyl)‐2,2′‐bipyridyl)(tfd), Ni(CO2Bubipy)(tfd).  相似文献   

19.
This article systematically investigates the influence of the properties of inhomogeneous N‐auxiliary ligands and pH value on the helical structures of complexes based on C2‐symmetric ligand 1,3‐adamantanedicarboxylic acid (H2ADC). Five kinds of neutral ligands (phen=1,10‐phenanthroline, bipy=4,4′‐bipyridine, bpa=1,2‐bis(4‐pyridyl)ethane, bpe=1,2‐bis(4‐pyridyl)ethane, and bpp=1,3‐bis(4‐pyridyl)propane) were selected, and a series of new ZnII/CoII dicarboxylates have been synthesized by slow diffusion, namely, [Zn(phen)(ADC)(H2O)]2 ? CH3OH ( 1 ), {[Zn(ADC)(bpe)] ? H2O}n ( 2 ), {[Zn(ADC)(bipy)] ? 2 H2O}n ( 3 ), {[Zn(ADC)(bpa)]2 ? 5 H2O}n ( 4 ), {[Zn(ADC)(bpp)]2 ? CH3OH}n ( 5 ), {[Zn(ADC)(bpp)]}n ( 6 ), {[Co(ADC)(bpp)(CH3OH)(H2O)] ? CH3OH ? 2 H2O}n ( 7 ), and {[Co(ADC)(bpp)]}n ( 8 ). Single‐crystal X‐ray structural analysis shows that complex 1 forms a 0D dinuclear with closed‐loop unit. The complex 2 is a 2D layer framework. Compounds 3 and 4 are isomorphous with a small discrepancy and present one‐dimensional chainlike structures. It is interesting that the 2D organic–inorganic hybrid frameworks containing meso‐helical chains have been observed. Compound 5 is a 2D interpenetrated network with (4,4) topology, in which homochiral left‐handed helical chains are arranged in an ABAB sequence parallel to the plane defined by (a,c), and right‐handed helical chains running along the a axis are also observed in the solid state, resulting in a meso‐helical structure. Compounds 6 , 7 , and 8 crystallize in a chiral space group P212121. Highly dimensional 6 and 8 are essentially isostructural and present a threefold interpenetrated 3D diamondoid network containing three helical chains, whereas 7 exhibits a 2D grid layer with a left‐handed helical chain. Furthermore, thermal stability, X‐ray powder diffraction, and the luminescent properties of 1 , 2 , 3 , 4 , 5 , 6 are also discussed.  相似文献   

20.
Two metal‐organic coordination polymers with one‐dimensional infinite chain motif, [Cd(bqdc)(phen)2]n ( 1 ) and [Co(bqdc)(phen)(H2O)2]n ( 2 ) (H2bqdc = 2,2′‐biquinoline‐4,4′‐dicarboxylic acid, phen = 1,10‐phenanthroline), have been synthesized under similar solv/hydrothermal conditions and fully structural characterized by elemental analysis, IR, and single‐crystal X‐ray crystallography. Their thermal stability and photoluminescence properties were further investigated by TG‐DTA and fluorescence spectra. In both complexes, the adjacent metal ions (CdII for 1 and CoII for 2 ) are linked together by dicarboxylate groups of bqdc dianions in chelating bidentate and monodentate modes, respectively, generating a zigzag chain for 1 and linear chain for 2 . The relatively higher thermal stability up to 324 °C for 1 and strong fluorescence emissions jointly suggest that they are good candidates for luminescent materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号